3,641 research outputs found

    Joseph R. Quinn

    Get PDF

    Curing kinetics and effects of fibre surface treatment and curing parameters on the interfacial and tensile properties of hemp/epoxy composites

    Get PDF
    The curing kinetics of neat epoxy (NE) and hemp fibre/epoxy composites was studied and assessed using two dynamic models (the Kissinger and Flynn-Wall-Ozawa Models) and an isothermal model (the Autocatalytic Model) which was generally supported by the experimental data obtained from dynamic and isothermal differential scanning calorimetry (DSC) scans. The activation energies for the curing of composites exhibited lower values compared to curing of NE which is believed to be due to higher nucleophilic activity of the amine groups of the curing agent in the presence of fibres. The highest tensile strength, σ was obtained with composites produced with an epoxy to curing agent ratio of 1:1 and the highest Young's modulus, E was obtained with an epoxy to curing agent ratio of 1:1.2. Alkali treated hemp fibre/epoxy (ATFE) composites were found to have higher σ and E values compared to those for untreated hemp fibre/epoxy (UTFE) composites which was consistent with the trend for interfacial shear strength (IFSS) values. Composites σ and E were found to be higher for a processing temperature of 70°C than for 25°C for both UTFE and ATFE composites, but were found to decrease as the curing temperature was increased further to 120°C

    Influence of accelerated ageing on the physico-mechanical properties of alkali-treated industrial hemp fibre reinforced poly(lactic acid) (PLA) composites

    Get PDF
    30 wt% aligned untreated long hemp fibre/PLA (AUL) and aligned alkali treated long hemp fibre/PLA (AAL) composites were produced by film stacking and subjected to accelerated ageing. Accelerated ageing was carried out using UV irradiation and water spray at 50 °C for four different time intervals (250, 500, 750 and 1000 h). After accelerated ageing, tensile strength (TS), flexural strength, Young's modulus (YM), flexural modulus and mode I fracture toughness (KIc) were found to decrease and impact strength (IS) was found to increase for both AUL and AAL composites. AUL composites had greatest overall reduction in mechanical properties than that for AAL composites upon exposure to accelerated ageing environment. FTIR analysis and crystallinity contents of the accelerated aged composites support the results of the deterioration of mechanical properties upon exposure to accelerated ageing environment

    Water quality monitoring in the Hoover Creek watershed, 2004-2006

    Get PDF
    https://ir.uiowa.edu/igs_tis/1051/thumbnail.jp

    Dielectric tuning and coupling of whispering gallery modes using an anisotropic prism

    Full text link
    Optical whispering gallery mode (WGM) resonators are a powerful and versatile tool used in many branches of science. Fine tuning of the central frequency and line width of individual resonances is however desirable in a number of applications including frequency conversion, optical communications and efficient light-matter coupling. To this end we present a detailed theoretical analysis of dielectric tuning of WGMs supported in axisymmetric resonators. Using the Bethe-Schwinger equation and adopting an angular spectrum field representation we study the resonance shift and mode broadening of high QQ WGMs when a planar dielectric substrate is brought close to the resonator. Particular focus is given to use of a uniaxial substrate with an arbitrarily aligned optic axis. Competing red and blue resonance shifts (30\sim 30 MHz), deriving from generation of a near field material polarisation and back action from the radiation continuum respectively, are found. Anomalous resonance shifts can hence be observed depending on the substrate material, whereas mode broadening on the order of 50\sim 50 MHz can also be simply realised. Furthermore, polarisation selective coupling with extinction ratios of >104> 10^4 can be achieved when the resonator and substrate are of the same composition and their optic axes are chosen correctly. Double refraction and properties of out-coupled beams are also discussed

    Lattice model theory of the equation of state covering the gas, liquid, and solid phases

    Get PDF
    The three stable states of matter and the corresponding phase transitions were obtained with a single model. Patterned after Lennard-Jones and Devonshires's theory, a simple cubic lattice model containing two fcc sublattices (alpha and beta) is adopted. The interatomic potential is taken to be the Lennard-Jones (6-12) potential. Employing the cluster variation method, the Weiss and the pair approximations on the lattice gas failed to give the correct phase diagrams. Hybrid approximations were devised to describe the lattice term in the free energy. A lattice vibration term corresponding to a free volume correction is included semi-phenomenologically. The combinations of the lattice part and the free volume part yield the three states and the proper phase diagrams. To determine the coexistence regions, the equalities of the pressure and Gibbs free energy per molecule of the coexisting phases were utilized. The ordered branch of the free energy gives rise to the solid phase while the disordered branch yields the gas and liquid phases. It is observed that the triple point and the critical point quantities, the phase diagrams and the coexistence regions plotted are in good agreement with the experimental values and graphs for argon

    Reflection of light and heavy holes from a linear potential barrier

    Full text link
    In this paper we study reflection of holes in direct-band semiconductors from the linear potential barrier. It is shown that light-heavy hole transformation matrix is universal. It depends only on a dimensionless product of the light hole longitudinal momentum and the characteristic length determined by the slope of the potential and doesn't depend on the ratio of light and heavy hole masses, provided this ratio is small. It is shown that the transformation coefficient goes to zero both in the limit of small and large longitudinal momenta, however the phase of a reflected hole is different in these limits. An approximate analytical expression for the light-heavy hole transformation coefficient is found.Comment: 6 pages, 2 figure

    Current therapeutic approaches to equine protozoal myeloencephalitis

    Get PDF
    Equine protozoal myeloencephalitis is the most important infectious neurologic disease of horses in the Western Hemisphere. Equine protozoal myeloencephalitis can interfere with a horse\u27s ability to race, work, and perform; untreated, EPM can be lethal. Antemortem diagnosis of EPM is challenging, requiring careful evaluation of the animal\u27s history, clinical signs, and laboratory data, with rigorous exclusion of other causes. Therapeutic approaches to EPM are evolving. First-generation therapeutic approaches for EPM were based on the classic anti–Toxoplasma gondii pyrimethamine–sulfonamide combinations; treatment is prolonged and can be associated with a considerable relapse rate, which may be associated with the difficulty in maintaining effective CNS concentrations of pyrimethamine. Second-generation therapeutic approaches are based on diclazuril and related triazine agentsa; in 2001, toltrazuril sulfoneb (ponazuril) became the first FDA-approved treatment for EPM. Triazine agents may have prolonged plasma half-lives, and their therapeutic efficacy would likely be enhanced by application of loading-dose schedules. A pyrimethamine-sulfonamide combination formulationc received FDA approval in 2004 for the treatment of EPM. Additionally, a diclazuril-based topical feed dressing formulationd received FDA approval in 2011. The ideal therapeutic agents for use against EPM would be effective when administered orally, with high efficacy against Sarcocystis neurona and minimal toxicity for horses. This article reviews the current information available for EPM, including the clinical pharmacology and efficacy of FDA-approved and nonapproved investigational medications for the treatment or prophylaxis of EPM. Equine protozoal myeloencephalitis is caused by 2 apicomplexan protozoal parasites: S neurona and, much less commonly, Neospora hughesi. Location of the causative organism in the CNS is random, so clinical signs of EPM are highly variable. Any combination of neurologic signs is possible, although spinal cord involvement is most common. Onset may be gradual or acute, with the usual pattern being mild clinical signs that progress with time. Furthermore, the intracellular localization of the causative organisms in the CNS creates difficulties for chemotherapeutic approaches and may also interfere with host-based immunologic defenses. Antemortem diagnosis of EPM is particularly challenging, requiring careful evaluation of the animal\u27s history, clinical signs, and laboratory data, with rigorous exclusion of other causes. Definitive diagnosis of EPM is dependent on necropsy detection of typical CNS lesions of the disease or presence of the appropriate causative organisms. Although careful clinical examination remains the most important antemortem diagnostic technique for EPM, laboratory methods have been developed to assist clinical diagnosis. As such, for horses with clinical signs consistent with EPM, it is optimal to perform immunoblotting, an indirect florescent antibody test, or ELISA analyses on blood and CSF samples prior to diagnosis and initiation of treatment. Preventative approaches to EPM are not well defined. Prevention of EPM with daily pyrantel tartratee administration at the current labeled dose has not been effective in immunocompetent horses1 or in interferon-γ knockout mice,2 even though the compound is active against S neurona in vitro.3 An EPM vaccine based on homogenates of S neurona merozoites with conditional licensure has been marketed for prevention of EPM, but this vaccine was removed from the market due to lack of efficacy data in prospective studies

    First-principles envelope-function theory for lattice-matched semiconductor heterostructures

    Full text link
    In this paper a multi-band envelope-function Hamiltonian for lattice-matched semiconductor heterostructures is derived from first-principles norm-conserving pseudopotentials. The theory is applicable to isovalent or heterovalent heterostructures with macroscopically neutral interfaces and no spontaneous bulk polarization. The key assumption -- proved in earlier numerical studies -- is that the heterostructure can be treated as a weak perturbation with respect to some periodic reference crystal, with the nonlinear response small in comparison to the linear response. Quadratic response theory is then used in conjunction with k.p perturbation theory to develop a multi-band effective-mass Hamiltonian (for slowly varying envelope functions) in which all interface band-mixing effects are determined by the linear response. To within terms of the same order as the position dependence of the effective mass, the quadratic response contributes only a bulk band offset term and an interface dipole term, both of which are diagonal in the effective-mass Hamiltonian. Long-range multipole Coulomb fields arise in quantum wires or dots, but have no qualitative effect in two-dimensional systems beyond a dipole contribution to the band offsets.Comment: 25 pages, no figures, RevTeX4; v3: final published versio
    corecore