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LATTICE MODEL THEORY OF THE EQUATION OF STATE
COVERING THE GAS, LIQUID, AND SOLID PHA -'S

A132TRACT

This study aims at obtaining the three stable sta;, ,; of matter and the cor-
responding phase transitions with a single model. Patterned after Lennard-
Jones and Devonshires's theory, a simple cubic lattice model containing two fee
sublattices (a and Q) is adopted. The interatomic potential is taken to be the
LLnnard-Jones (6-12) potential. Employing the Cluster Variation Method, the
Weiss and the pair approximations on the lattice gas failed to give the correct
phase diagrams. Hybrid approximations are then devised to describe the lattice
term in the free energy. A lattice vibration term corresponding to a free vol-
ume correction is included semi-phenomenologicall y . The combinations of the
lattice pa.t and the free volume part yield the three states and the proper phase
diagrams. To determine the coexistence regions, the equalities of the pressure
and Gibbs free energy per molecule of the coexisting phases are utilized. The
ordered branch of the free energy give.3 rise to the solid phase while the dis-
ordered branch yields the gas and liquid phases. It is observed that the triple
point and the critical point quantities, the phase diagrams and the coexistence
regions plotted are in good agreement with the experimental values and z*raphs
for Argon. It is also apparent in the investigation that the vibrational term was
vital in getting the three phases.
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LATTICE MODEL THEORY OF THE EQUATION OF STATE
COVERING THE GAS, LIQUID, AND SOLID PHASES

I. INTRODUCTION

At present, there is still a need for a unified theory that will cove -.I1 three
phases of matter as well as generate the proper transformations observed among
phases. This study is an lttempt to meet this need by utilizing a single model
to formulate the equation of state of a simple substance semiquantitatively.

The . -)del proposed here is the rigid lattice gas model of Hor i guchi and Tanaka'
with an effective vibration of the atoms about the lattice sites to represent a
free volume correction. Section II describes the model while Section III presents
the results of the Weiss and th-: pair approximation; in the Cluster Variation
Method (CVM) 2 as applied to the lattic_ part of the model. A new set of approxi-
mations called the hybrid approximations is presented in Section IV, based on the
CVNI. The effective free volume correction is also formulated. Section V de-
scribes the results and compares them with the results of the expandable model
calculations by Mori, et a13 and the experimental studies for Argon°

H. THE MODEL

According to classical statistical mechanics, the Ilelmholtz free energy of a
system of K particles is gi%en by

F=-k B T'. Z N = F k +F
	 (1)

where Z  is the canonical p utition function of the system, k  is the Boltzma,.n
constant and T is the absolute temperature. The division of the free energy into
the kinetic part

FF = NkB T ' ^3	
(2)

\% . ith • j = (112/2:.mkBT)' z , and the configurational part

(3)
F( . = - k B T ' QN.
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where Q N is the configurational integral

	QN= 1	 e Au ( r  ) d rN .N^ ^

is the natural way of representing the total free energy. The evaluation of the
integral in (4), however, is a formidable task. An alternative classification of
the contributions to the free energy is offered by the lattice gas model which
avoids the difficult integrations.

The total free energy is alternatively split into two quantities

F - FL+Fv

where F L is the lattice part arising purely from the configurational free energy
F, and is evaluated conveniently in the Cluster Variation Method. The effective
free volume F v contains part of the configurational free energy and part of the
kinetic free energy which are usually dropped in lattice model calculations.

In this work, the rigid lattice model (RLM) is adopted because in the pressure
range of interest, the lattice constant of the crystalline state does not change
appreciably. Figure 1 shows a simple cublic lattice with f.c.c. a and jj sub-
lattices. N atoms are distributed over the I, lattice sites forming the above
lattice structure and with a fixed lattice constant a. The number density is then
defined by

h_1

	

P	
1_	 v

where v = V/Na .3 and V = La'.

Similarly, the number densities of a sites and ^3 sites are

NQ

Pa La

N,9

PQ Lp

M

(4)

(6)

(7)

(8)

3
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where L Q and L P are the nun- ber of the a sites and 0 sites, respectively, v hile
N,. and N Q are the corresponding number of atoms on the a and 13 sites. One
has the following relations:

N,, + Nj - N,	 (3)

LQ + Lp = L,	 (10)

Ln = LQ = 2 L.	
(11)

A long range order (L.R.O.) para.eter is defined by

R = (pa - p)1(1 - p).	 (12)

Since the completely ordered state is described by a state in which all a sites
are occupied, pa is equal to unity and hence R = 1. In the completely disordered
state, both the a and b sites are equally populated, hence, p,, = pa = p and
consequently R = 0. As defined by (12), therefore, the L.R.O. parameter is
properly chosen. In terms of this parameter, the number dc,nsities on the a a.-1d
,3 sites are written as

PQ = P + ( I - P) R	 (13)

PQ = P - (I - P)R.	 (14)

It is of interest in this paper to investigate systems described by the Lennard-
Jones potential

[(.Z)12 - (-)6]	
(15)

with o- denoting the distance where the potential is zero and - E being the minimum
value of the potential. The following dimensionless (reduced) quantities are
introduced for calculational convenience,

T=kT	
p=Pa3	 F=F, g = g

	 (1(
E	 E	 E	 E

The free volume is now introduced as an effective vibration of the atoms about
the lattice sites.

^(r) = 4E

4
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The free energy of a molecule confined in a harmonic potential well is known to be

ti ti

T V	 T to q = 2 + T -L Tn(1 - e 1i )

	

T	 (17)

where is a reduced frequency defined by w =tt-/E ,w being the classical fre-
quency. The symbol q represents the canonical partition function of a simple
harmonic oscillator. Assuming that all the molecules see identical confining
cages (Einstein model), the vibrational free energy per lattice site may be written
as

^,v ^	 ti	 ti ti

	

Tv = l- = Pa' + PT n(1 - e ^'' T ).	 (18)
1:	 2

The quantity 'W is an unknown function of the parameter R and/or density f.. One
knows by physical considerations that it should be an increasing function of these
quantities since the stiffness of the confining potential increases with R and/or
p . In this paper, a linear dependence on R is proposed, namely

= Za R + we
	 (19)

where Z c and we are adjustable parameters. The parameter w e can be inter-
preted as a measure of the relative stiffness of the confining potential in th q dis-
ordered configuration compared to that of the ordered state. The parameter Ze
on the other hand, can be chosen to give the correct triple point temperature.
Equations (18) and (19) define the free volume term which will be added to the
lattice free energy in later discussions.

III. THE WEISS AND THE PAIR APPROXIMATIONS

In this section, the consequences of the purely lattice free energy E L are examined
in the Weiss and the pair approximations of the Cluster Variation. Method.

The variational function for the one-site or Weiss approximation in the CVM
is given by the trial free energy per lattice site,

5
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TL - 
PL

= r 3U( 1) + 6U(2) + 4U ( 3) + 3U(4)1 p'

- [3U(1) - 6U(2) + 4U(3) - 3U(4)] (1 - p) 2 RZ

+ 2 T t[p + (1 - p ) R] to [p + (1 - p) R] + ( 1 - p ) ( 1 - R) to [(1 - p ) ( 1 - R)]

+ [p - ( 1 - p ) R] ^ n [p - (1 - p) R] + ( 1 - p ) ( 1 + R) to [(1 - p ) ( 1 + R)]) (20)

in terms of the L.B.O. parameter R and U (k) _ (k)/t which is the reduced pair
interaction with the kth nearest neighbor atom. Upon specifying the temperature
T anG olume v, Eq. (20) becomes a function of R alone and minimization is
easily done by setting

dfL

	

= 0.	 (21)
aR T.

The non-zero solution for R yields the ordered state r.,c the free energy per
lattice sitehRD . The disordered state corresponding to the fluid state arises
from Eq. (20) with the solution R = 6, ..e.

f Dis = [3U(1) + 6U(2) + 4U(3) 3U(4)] t 2 + T[p en p + ( 1 + p ) ^n(1 - p )]	 (22)

The system ' s actual free energy is then deduced from

fL=Min(fO^, fDlsi. 	 (23)

From thermodynamics, expressions for the pressure and Gibbs free energy
per molecule (chemical potential) can be (, I )tained. Specifically, for the rigid
lattice mode l. these are:

P = - f + p (L	 (24)
ap rL

	

g= (f +P)v.	 (25)

6
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The ordered pressure and chemical potential follow from (24) and (25) if the
ordered free energy is substituted while the corresponding disordered quantities
are obtained if the disordered free energy is used.

To avoid enormous graphical construction in determining the coexistence regions,
the coexistence conditions for two phases A and B are used, namely

P(PA) _ P(PB)	 (26)

g (PA ) = g (PB )

	 (27)

i
for a given temperature T. "his pair of conditions is equivalent to Maxwell's
equal-area construction in the P-v isotherm or the common tangent construction
in the ^, - v isotherm, where tm = fxv denotes the reduced Helmholtz free energy
per molecule.

Calculations with the purely lattice term in the Weiss approximation as described
above yield a couple of major difficulties:

(1) It is not possible to get the liquid state and the li q uid-gas critical point
in the Lennard-Jones potential dae to the stiff repulsion in the first
nearest neighbor. A very soft core potential is necessary to obtain a
fluid loop in the disordered branch of free energy.

(2) Adopting an unrealistically soft core, a fluid loop is realized. However,
the liquid appears in the wrong region of the phase diagram, namely
gas, solid, liquid in that order with decreasing volume.

The Weiss approximation, one may conclude, has favorable features if one wishes
to de g ^ri'je remelting at high pressures where the existence of the vapor pressure
curve and the critical point is not of concern. In the region near the triple point,
however, which is the focus of this investigation, the Weiss approximation cannot
give the proper phase diagrams even with the addition of a free volume correction.

One order higher in the hierarchy of approximations in the CVM is the two-site
or pair approximation. The variational free energy of the lattice in this approxi-
mation is given by

7
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TL = 3{U(1) X a,8(1) + Ta,81Xa,3(1) to Xa,3(1)

+ (Pa - Xa6( 1 )) '?- n (Pa - X,4 1 )) + (P ,p - X"/3 ( l )) 'l n (Pp - Xa 13( 1 ) )

+ ( I - Pa - p,8 + k '30)) tn(1 - Pa - P,p + Xa ,3(1) )] )

+ 3 { U(2) Xaa (2) a T R. (2) tnXaa(2)

+ 2 (pa - Xaa( 2 )) ^n(pa - Xaa (2)) + (1 - 2pa + ) aa (2)) tn(1 - 2 , 9a + Xaa(2)])

+ 3{U(2) X,3,8(2) + T [ X,3,8(2) to X,8,8(2)

+ 2 (pp - X,,/3(2)) tn(pq - X,3,8(2)) + ( 1 - 2p,3 + X,8,8( 2 )) ,̂n ( 1 - 2p,3 +XOt3(2)1 )

+ 4 { U (3) X,,"8 (3) + T [X,, ,3 (3) ?n X,,,6(3)

+ (Na - Xo(, 3 )) tn(pa - Xa,,3( 3 )) + (PQ - Xa,3(3)) tn(p,8 - Xa,C13))

+ (I - p,, P,3 + Xa,8(3)) tn(1 - pa - PQ + Xa13(3))] }

+ 2 {U(4) Xaa( 4 ) + T [Xaa (4) ^n Xaa (4)

+ 2 (pa - Xaa (4 )) tn (Na - Xaa(4 )) + (I - 2pa + ) aa (4)tn(I - 2Pa +Xaa(4))]}

+ 2 {U(4) X,813 (4) + T[X,8p(4) ^,n X,3,8(4)

+ 2 (pQ - X,8,,,3(4)) tn(PI3 - Xaa(4)) + (1 - 2p,8 + Xtjp(4)) tn(1 - 2p,8 + XQ,3!4))] )

2 T [Pa to Pa + ( 1 - Pa )	 pa) + p,8 to P,8 + (1 -Pp)	 +PQ)(28)

The notation X a,(, (j) represents the pair correlation parameter betwe-in a pair of
jth neighbors one of which is an a site, the other a,., site. The other pair param-
eters are defined in the same manner. This trial free energy is minimized with
respect to the six pair correlation parameterb Xalj (1), X aa (2), X,8p (2), X,,,3 (3),
X aa (4) and X,3,, (4), and with respect to R which enters through Pa and Pp. The
minimum value with R non-zero gives riso to the ordered state free energy, foeD .

8
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In analogy with the Weiss approximation, the disordered free energy in the
two-site approximation is obtained with R = 0 and the pair parameters related
by X i; (k) = X 3, (k) = X(k),

fp. s 17 3(U(1) X(1) + T[X(1) tnX(1) + 2(p - X(1)) tn(p - X(1))

+ (1 - 2p + X(1)) tn(1 - 2p + X(1))])

+ 6(U(2) X(2) + T [X(2) ^n X(2) + 2(p - X(2)) tn(p - X(2))

+ (1 - 2p + X(2)) tn(1 - 2p + X(2))])

+ 4(U(3 ) X(3) + T [X(3) 	 X(3) + 2(N - X(3)) tn(p - X(3))

+ (1 - 2p + X(3)) tn(1 - 2p + X(3))])

+ 3{U(4) X(4) + T [X(4) tn, X(4) + 2(p - X(4)	 (p - X(4))

!- (1 -2p+X(4)) tn(1 - 2p + X(4))])

- 31 T [p to p + (1 - p) tn(1 - p)] .	 (29)

Tne pair parameters are determined by minimizing (29) with respect to the
X (k), k = 1, 2, 3, 4. The ordered and disordered pressure and chemical potential
are determined from (24) and (25) with the ordered and disordered free energies
substituted, respectively.

Calculations in the two-site cluster approximation showed a significant improve-
ment in the sense that even with the Lennard-Jones potential, the fluid loop can
exist in a reasonable range of temperature. This implies Oat if one disregards
the presence of the solid phase in the diagram, a finite critical temperature is
realized, making the existence of a liquid state more feasible.

A basic difficulty however is the instability cf the results with variation in the
order of the nearest neighbors included in the calculation. If only the nearest
and second neighbor pairs are included, the free energy of the ordered br•.nch
is lower than the disordered branch of free energy. However, when third or
fourth nearest neighbors are included, the disordered branch becomes lower.

9
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It is in the spirit of these difficulties in the Weiss and pair approximations that
a physically reasonable way of combining them was devised as described in the
following section.

IV. THE HYBRID APPROXIMATIONS

The hybridization procedure is based on a sound physical observotion that
neighbors which are situated farther from the site under consideration are more
blurred in their details than the nearer sites. Applying this to the lattice problem,
the first nearest neighbors are treated in the two-body approximation while the
farther neighbors (2nd, 3rd, 4th, etc.) are described in the Weiss approximation.
VariationF of this process are clearly possible.

It is convenient in the hybrid approximations to adopt the notation [ 2 - (m)11 to
indicate that the effect of the nearest nc'ghbor interaction is calculated in the
pair approximation while the next m shells of interacting neighbors are treated
in the Weiss approximation. Hybrid approximations 12-11, 'L2 - (3)11, [ 2 - (5)1 1,
and [ 2-(711] are investigated. The trial free energies in these bybrid approxi-
mations are the following:

TE L [ 2 -1] - 3[U(1)XQA(1)+U(2)(pl+pp)+3T[XQ^(1)^nXQ,3(1)+(p. -X.0(1))^k(p.

-Xa0(1 )) + L"Q-Xal^(1))^n(p/3- XnQ(1) }+ (1 -Pa -PA +Xaq(1))^n(1 -PQ -Pp

ti
+	 2T(ka -tnpa+(I..p,,)^n(1-pa)+p'6^npj+(1 -P,p) tn ( 1— fjn)) (30)

TL [2  - (3) 11 = f L [2 - 1] ! 4 U( 3) PaP + 2 U( 4 ) (P; + p')	
(31)

^' L  [2 - (5) 11 = ^'- [2 - (3) 11 + 12 U(5) papQ + 6U(6) (PQ + PI)	 (32)

TLL [2 - (7) 1 ] = f L [2 - (5) 11 + 3U(7) (PQ + P18 + 4U(8) PaN,3. 	 (33)

I

These trial free energy expressions are minimized with respect to R and the
pair function XQ,, (1) giving rise to the ordered values of the free energies in the
different hybrid approximations for non-zero R, as functions of density P and
temperature T.

10
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In order to obtain the discrdered branch of the free energy in these approxima-
tion, R is set to zero and the resulting expressions are minimized with respect
to the single pair parameter X(1). One then gets the following:

f nis [2 - 11 = 3[U(1) X(1) + 2U(2) p^] ; 3T [X(1) tn X(1) + 2(p -X(1)) tn(p - X(1))

+(1 - 2p+X(1)-;n(1 - 2p+X(1)) - ST[ptnp+(1 - p)Cn(1 - p))	 (34)

fDls [2 - (3) 11 - fnis [2 - 11 + [4U(3) + 3U(4)] p 2	 (35)

TLDIS [2 - (5) 1] - f DIS L2 - (3) 11 + [12U(5) + 12U(6)) p 2	 (36)

fDis [2 - (7) 1] = TL' [2 - (S) 1; + [6U(7) + 4U(8)] p2. 	 (37)

l'he corresponding ordered and disordered presSLre and chemical potential follow
from (24) and (25).

Ail the above hybrid approximations on the lattice Helmholtz free energy per site
displayed basically the same characteristics when plotted as functions of volume.
A finite value for the critical temperature T, ^ s a common feature reminiscent
of the pair approximation. Although the lattice part alone does not suffice to
correctly describe the thermodynamic phase diagrams and the three states, all
the hybrid approximations resulted into a lower ordered free energy consistently.
They are therefore susceptible to a corrective treatment which essentially raises
the ordered relative to the disordered free energy like the free volume correction
described earlier.

There are four combinations arising from the four hybrid approximations on the
lattice investig:k..ed. The trial free energies of the combined lattice and free
volume parts are as follows:

f [2 - 11 - f	 [2 -- 11	 + f" (38)

T [2 — (m) 1)	 - TL [2 - (m) 11 + T'	 m = 3.	 5,	 7, (39)

where IL is defined by (18) and (19).

ti
As before, the ordered state free energy fORD in the various approx.ima'.?ons are
obtained by minimizing the above equations with respect :a R and X, Q (1). The
corresponding di nordered free energy branches follow by setting R = 0 and
minimizing the corresponding exp-essions

11
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f^

	
i

l

fDIS [2 	 1 1 . f DIS 
[2	 1] + f DIS

	

fDIS [2 - (m) 1] = f DIS [2 - (m) 1 1 + f DIS	 m = 3, 5, 7	 (41)

%%ith respect to X(1). Use of equations (24) and (25) enables one to get the expres-
sions for the ordered pressure and chemical potentials

	

of	 [2 - 1]

	

PORD [2 - 11 - f ORD [2 - 1 1 + P ( 
o^	

)	 (42)
P	 T. L

	

-	 ^

P	 [2 - (m) 11 _ - f	 [2 - (m ) 11 +,c 1\
(( -a?[2 (m) 1]

oRD	
m _ 3. 5. 7	 (13)ORn	 oRD	

a

	

F	 T. L

gORD [2 - 1 1 
= (fORD [2 - 1 1 + PORD [2 - 1)) v	 (44)

gORD [2 - (m) 1] _ ( foRD [2 - (rn) 1 1 + PORD L 2 - (m) 11 ) v m = 3. 5. 7	 (45)

and the corresponding disordered pressure and chemical potentials.

In all approximations, the system's actual free energy is given by the lower of
the two branches of free energy, namely

	

f = Min{ff }.	 (46)

	

ORD	 DIS

The results vf these approximations are presented and discussed in the next
section.

V. RESULTS AND CONCLUSIONS

Having obtained the free energy and pressure expressions in the hybrid approxi-
mations with free volume correction, one makes use of the coexistence conditions

• (26) and (27) to obtain the phase transformations and the coexistence regions for
melting, -ondensation and sublimation. Applying these conditions appropriately
over a range of temperature T, the PT diagrams shown in F i gure 2 for a simple,

•	 classical systeln are generated for various hybrid approximations with free
volume correction. The coexistance diagram is shown. in Figure 3 for the [ 2 - (7)11
hybrid approximation with lattice vibration. The vibrational parameter wo is taken
to be .01 for all hybrid approximations while zo = 1.256 for the [2 - (3)11 and
[2 - (5)1] approximations and z o = 1.415 for the [2 - (7)1] hybrid approximation.

13

(40)
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The typical behavior of an isotherm for temperatures above the triple point isti
shown in Figures 5a b, and c where an isotherm of temperature T = 0.71 is
plotted in the pressure, Helmholtz free energy per molecule, and chemical po-
tential against density diagrams in the [ 2 - (5)11 approximation with free volume
correction.

The typical behavior of an isotherm for temperatures below the tri p le point tem-
perature is sho%%n in Figures 6a, b, and c. Plotted in the pressure, Helmholtzti
free energy per molecule, and cLerr_ ical potential against diagrams is the T = 0.68
isotherm in the [ 2 -(3)1] apprcxiination with free volun ►e correction. There is
a slight variation here since twc tr ^nsit ons, gas to liquid and gas to solid, com-
pete because both are possible undo 'he criteria (26) and (27). It is the gas to
solid transition which is realized, however, since it corresponds to a lover
Helmholtz free energy per molecule and lower chemical potential.

In Table 1, the triple point quantities ere shown. The results of the present
rigid lattice caiculations ( Row 1) are compared kith the expandable lattice calcu-
lations ( Row 11) by Mori et a1 3 and the experimental values for Argon (Row III).
similarly, the critical point quantities are displayed in Table 2. Within the
.i ►ermodynamic region of interast, it is apparent that the present rigid lattice
heory is better than the expandable lattice theory. Calculations for the latent

heat of transformations using Lie Clausius -Clape_yron equation and the phase
diagrams obtained in the present theory are being done. The authors hope to
present the results in the future.

To improve the present, theory, it is desirable to obtain a more accurate
formulation of the free volume term, ultimately avoiding the phenomenological
part. Raising the order of the CVM approximation is a possible option. A bettl-r
alternative way is suggested by introducing more types of lattice sites, effectively
shrinking the lattice spacing. In this process, the effect of vibration is gradually
and partly incorporated into the lattice term. A physical limit in the spacing
might exist after which the ad hoc addition of the vibrational or free volume
term becomes unnecessary.

The nature of the convergence of the results in the h i erarchy of approximations
in the CVM toward the correct ones is not yet clear (even for systems related
to the lattice gas, e.g. magnetic systems, binary alloys, etc.). A related question
is the stability of the general results with respect to the order of neighbors
included. As the interaction becomes long-ranged , one must naturally include
more neighbors in the calculations. The authors believe that the order of the
approximation and the range of interaction are intimately connected. The hybrid
approximations introduced in this paper are the simplest ways of investigating
the effects of longer - ranged interactions. It is obvious that higher orders in the
CVM can also be hyK-idized which, hopefully, may shed more light to the present
querry.

13
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Figure 1. The simple cubic lattice formed by a and " sites. Both the 2 and
i) sublattices are face-centered cubic in structure.
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Figure 6a. The isotherm T = 0.68 in the [2 - (3)11 approx-
imation with free volume correction (wo = .01, z o = 1.256)
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Table 1
The Triple Point

Approximatdion
Tt Pi = 21"	 vt = vc / s P, vc ^ Tc (LI

I.	 Rigid

(a)	 l 2 - (3)11	 (G) 30.12 0.8364 0

z o 	= 1.256	 (L) 0.713 0.0198 1.382 0.0384 0

wo = .01	 (S) 1.0010 0.0278 0.9981

159.52 0.9571 0(b)	 [ 2 - (5)11	 (C)
z o = 1.256	 (L) 0.700 0.0042 1.187 0.00712 0

``'o	
= .01	 (S) 1.00024 0.00600 0.99960

1 212.5 0.9742 0(c)	 (2-(7)11	 (G ►
zo = 1.415	 W 0.698 0.0032	 1 1.170 0.00536 0

10 _ .01	 (S) 1.00020 0.00458 0.99964

IL	 expandable
(a)	 Without	 (G) 20.7 0.7686 0

Free Vol.	 (L) 1.487 0.055 1.820 0.0676 0

b1C2(1)	 (S) 1.248 0.0463 0.9997

(b)	 With Free
Volume
ME4 (1 1 , 1:)

(G) 130.3 9.9206 0

(2.10)	 (I.) 0.7789 0.00550 1.431 0.0101 0
(S) 1.114 0.0079 1

26.57 0.7320 0(G)

(3,12)	 (L) 0 8509 0.02344 1.654 0.0456 0
(S) 1.170 0.0323 I

III.	 Experiment	 (L)
0.700 0.00151

1.186 0.00256

(Argon)	 (S) 1.035 0.00223
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Table 2
The Critical Point

Model and
T P* = 2P v * = v P v /T T /T

Approximation C C	 C <	 c.'2 C	 C	 C C	 <

I.	 Rigid Lattice

(a)	 [ 2 -11 0.670 0.0'4 3.20 0.353
(b)	 [ 2-(3)11 0.975 0.1080 3.16 0.350 1.367
(c)	 11 2-(5)11 1.237 0.1382 3.25 0.363 1.767
(d)	 [2-(7)11 1.282 0.1431 3.26 0.364 1.837

II.	 Expandable
(a)	 Without Free

Free

Volume

MC2(1) 2.049 0.2001 3.682 0.3596 1.378
MC2(a) 1.751 0.1271 4.023 0.2921

(b)	 With Free
Volume

NI E4
^ l	= 0 2.2974 I	 0.3025 2.665 0.3509
^1	= 2 1.5331 0.2238 3.394 0.4956 1.968

^ 1	= 3 1.2025 0.1999 2.920 0.4852 1.413

I11.	 Experiment
(Argon)
e/k = 119.8° K 1.2G 0.116 3.16 0.291 1.80

J = 3.405 A
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