59 research outputs found

    Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033-26033): a randomised, open-label, phase 3 intergroup study.

    Get PDF
    BACKGROUND: Outcome of low-grade glioma (WHO grade II) is highly variable, reflecting molecular heterogeneity of the disease. We compared two different, single-modality treatment strategies of standard radiotherapy versus primary temozolomide chemotherapy in patients with low-grade glioma, and assessed progression-free survival outcomes and identified predictive molecular factors. METHODS: For this randomised, open-label, phase 3 intergroup study (EORTC 22033-26033), undertaken in 78 clinical centres in 19 countries, we included patients aged 18 years or older who had a low-grade (WHO grade II) glioma (astrocytoma, oligoastrocytoma, or oligodendroglioma) with at least one high-risk feature (aged >40 years, progressive disease, tumour size >5 cm, tumour crossing the midline, or neurological symptoms), and without known HIV infection, chronic hepatitis B or C virus infection, or any condition that could interfere with oral drug administration. Eligible patients were randomly assigned (1:1) to receive either conformal radiotherapy (up to 50·4 Gy; 28 doses of 1·8 Gy once daily, 5 days per week for up to 6·5 weeks) or dose-dense oral temozolomide (75 mg/m(2) once daily for 21 days, repeated every 28 days [one cycle], for a maximum of 12 cycles). Random treatment allocation was done online by a minimisation technique with prospective stratification by institution, 1p deletion (absent vs present vs undetermined), contrast enhancement (yes vs no), age (<40 vs ≥40 years), and WHO performance status (0 vs ≥1). Patients, treating physicians, and researchers were aware of the assigned intervention. A planned analysis was done after 216 progression events occurred. Our primary clinical endpoint was progression-free survival, analysed by intention-to-treat; secondary outcomes were overall survival, adverse events, neurocognitive function (will be reported separately), health-related quality of life and neurological function (reported separately), and correlative analyses of progression-free survival by molecular markers (1p/19q co-deletion, MGMT promoter methylation status, and IDH1/IDH2 mutations). This trial is closed to accrual but continuing for follow-up, and is registered at the European Trials Registry, EudraCT 2004-002714-11, and at ClinicalTrials.gov, NCT00182819. FINDINGS: Between Sept 23, 2005, and March 26, 2010, 707 patients were registered for the study. Between Dec 6, 2005, and Dec 21, 2012, we randomly assigned 477 patients to receive either radiotherapy (n=240) or temozolomide chemotherapy (n=237). At a median follow-up of 48 months (IQR 31-56), median progression-free survival was 39 months (95% CI 35-44) in the temozolomide group and 46 months (40-56) in the radiotherapy group (unadjusted hazard ratio [HR] 1·16, 95% CI 0·9-1·5, p=0·22). Median overall survival has not been reached. Exploratory analyses in 318 molecularly-defined patients confirmed the significantly different prognosis for progression-free survival in the three recently defined molecular low-grade glioma subgroups (IDHmt, with or without 1p/19q co-deletion [IDHmt/codel], or IDH wild type [IDHwt]; p=0·013). Patients with IDHmt/non-codel tumours treated with radiotherapy had a longer progression-free survival than those treated with temozolomide (HR 1·86 [95% CI 1·21-2·87], log-rank p=0·0043), whereas there were no significant treatment-dependent differences in progression-free survival for patients with IDHmt/codel and IDHwt tumours. Grade 3-4 haematological adverse events occurred in 32 (14%) of 236 patients treated with temozolomide and in one (<1%) of 228 patients treated with radiotherapy, and grade 3-4 infections occurred in eight (3%) of 236 patients treated with temozolomide and in two (1%) of 228 patients treated with radiotherapy. Moderate to severe fatigue was recorded in eight (3%) patients in the radiotherapy group (grade 2) and 16 (7%) in the temozolomide group. 119 (25%) of all 477 patients had died at database lock. Four patients died due to treatment-related causes: two in the temozolomide group and two in the radiotherapy group. INTERPRETATION: Overall, there was no significant difference in progression-free survival in patients with low-grade glioma when treated with either radiotherapy alone or temozolomide chemotherapy alone. Further data maturation is needed for overall survival analyses and evaluation of the full predictive effects of different molecular subtypes for future individualised treatment choices. FUNDING: Merck Sharpe & Dohme-Merck & Co, Canadian Cancer Society, Swiss Cancer League, UK National Institutes of Health, Australian National Health and Medical Research Council, US National Cancer Institute, European Organisation for Research and Treatment of Cancer Cancer Research Fund

    Exceptionally high incidence of symptomatic grade 2–5 radiation pneumonitis after stereotactic radiation therapy for lung tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine the usefulness of dose volume histogram (DVH) factors for predicting the occurrence of radiation pneumonitis (RP) after application of stereotactic radiation therapy (SRT) for lung tumors, DVH factors were measured before irradiation.</p> <p>Methods</p> <p>From May 2004 to April 2006, 25 patients were treated with SRT at the University of Tokyo Hospital. Eighteen patients had primary lung cancer and seven had metastatic lung cancer. SRT was given in 6–7 fields with an isocenter dose of 48 Gy in four fractions over 5–8 days by linear accelerator.</p> <p>Results</p> <p>Seven of the 25 patients suffered from RP of symptomatic grade 2–5 according to the NCI-CTC version 3.0. The overall incidence rate of RP grade2 or more was 29% at 18 months after completing SRT and three patients died from RP. RP occurred at significantly increased frequencies in patients with higher conformity index (CI) (p = 0.0394). Mean lung dose (MLD) showed a significant correlation with V<sub>5</sub>–V<sub>20 </sub>(irradiated lung volume) (p < 0.001) but showed no correlation with CI. RP did not statistically correlate with MLD. MLD had the strongest correlation with V<sub>5</sub>.</p> <p>Conclusion</p> <p>Even in SRT, when large volumes of lung parenchyma are irradiated to such high doses as the minimum dose within planning target volume, the incidence of lung toxicity can become high.</p

    Radiation guidelines for gliomas

    No full text
    International audienceGliomas are the most frequent primary brain tumour. The proximity of organs at risk, the infiltrating nature, and the radioresistance of gliomas have to be taken into account in the choice of prescribed dose and technique of radiotherapy. The management of glioma patients is based on clinical factors (age, KPS) and tumour characteristics (histology, molecular biology, tumour location), and strongly depends on available and associated treatments, such as surgery, radiation therapy, and chemotherapy. The knowledge of molecular biomarkers is currently essential, they are increasingly evolving as additional factors that facilitate diagnostics and therapeutic decision-making. We present the update of the recommendations of the French society for radiation oncology on the indications and the technical procedures for performing radiation therapy in patients with gliomas

    Spécificités de l’imagerie pour l’hadronthérapie (protonthérapie, thérapie par ions carbone, hélium et autres particules chargées) pour la planification, le repositionnement, le contrôle de la dose et l’évaluation de la réponse tissulaire

    No full text
    CERVOXYInternational audienceImaging is critical to each step of precision radiation therapy, i.e. planning, setup, delivery and assessment of response. Hadrontherapy can be considered to deliver more precise dose distribution that may better spare normal tissues from intermediate low doses of radiation. In addition, hadrontherapy using high linear energy transfer ions may also be used for dose escalation on biological target volumes defined by functional imaging. However, the physical characteristics of hadrontherapy also make it more demanding in terms of imaging accuracy and image-based dose calculation. Some of the developments needed in imaging are specific to hadrontherapy. The current review addresses current status of imaging in proton therapy and the drawbacks of photon-based imaging for hadrons. It also addresses requirements in hadrontherapy planning with respect to multimodal imaging for proper target and organ at risk definition as well as to target putative radioresistant areas such as hypoxic ones, and with respect to dose calculation using dual energy CT, MR-proton therapy, proton radiography. Imaging modalities, such as those used in photon-based radiotherapy (intensity modulated and stereotactic radiotherapy), are somewhat already implemented or should be reaching “routine” hadrontherapy (at least proton therapy) practice in planning, repositioning and response evaluation optimizable within the next five years. Online monitoring imaging by PET, as currently developed for hadrontherapy, is already available. Its spatiotemporal limits restrict its use but similar to prompt gamma detection, represents an area of active research for the next 5 to 10 years. Because of the more demanding and specific dose deposit characteristics, developments image-guided hadrontherapy, such as specific proton imaging using tomography or ionoacoustics, as well as delivery with MR-proton therapy, may take another 10 years to reach the clinics in specific applications. Other aspects are briefly described such as range monitoring. Finally, the potential of imaging normal tissue changes and challenges to assess tumour response are discussed.L’imagerie est essentielle à chaque étape de la radiothérapie de précision, et en particulier la planification, la vérification du repositionnement en salle, la vérification de la dose et l’évaluation de la réponse. Certains des développements nécessaires en imagerie sont spécifiques à l’hadronthérapie du fait des caractéristiques du dépôt de dose et des interactions dans la matière. Cette brève revue porte sur l’état actuel de l’imagerie en protonthérapie et sur les inconvénients de l’utilisation d’une imagerie X pour les hadrons. Elle décrit les exigences de la planification de l’hadronthérapie en ce qui concerne l’imagerie multimodale pour la définition de la cible et des organes à risque, ainsi que les pistes actuellement identifiées pour cibler spatialement et temporellement l’hypoxie tumorale. Le calcul de la dose par tomodensitométrie à double énergie, la protonthérapie-IRM et la radiographie par protons sont des voies de recherche actuelles en imagerie pour réduire les incertitudes liées à l’imagerie X dans le calcul de la dose. Les modalités d’imagerie utilisées en radiothérapie classique par photons en planification, repositionnement et évaluation de la réponse sont globalement toutes transposables ou déjà présentes et optimisables en hadronthérapie dans un horizon de 5 ans. L’imagerie de contrôle en ligne, actuellement spécifique à l’hadronthérapie, par TEP est déjà disponible. Ses limites spatiotemporelles restreignent son usage mais sont une voie de recherche active, comme la détection de gamma prompts, pour les 5-10 années à venir. Les problématiques de radiothérapie guidée par l’image spécifiques à l’hadronthérapie, plus requérante du fait du dépôt de dose “fini”, telles que la tomographie par protons ou la ionoacoustique, le seront probablement dans un horizon de 10 ans dans des applications particulières. Les aspects de vérification du parcours des hadrons sont brièvement décrits. Enfin, le potentiel de l’imagerie pour analyser des effets infracliniques dans les tissus normaux et les défis liés à l’évaluation de la réponse tumorale sont discutés
    corecore