1,598 research outputs found

    Qualitative understanding of the sign of t' asymmetry in the extended t-J Model and relevance for pairing properties

    Full text link
    Numerical calculations illustrate the effect of the sign of the next nearest-neighbor hopping term t' on the 2-hole properties of the t-t'-J model. Working mainly on 2-leg ladders, in the -1.0 < t'/t < 1.0 regime, it is shown that introducing t' in the t-J model is equivalent to effectively renormalizing J, namely t' negative (positive) is equivalent to an effective t-J model with smaller (bigger) J. This effect is present even at the level of a 2x2 plaquette toy model, and was observed also in calculations on small square clusters. Analyzing the transition probabilities of a hole-pair in the plaquette toy model, it is argued that the coherent propagation of such hole-pair is enhanced by a constructive interference between both t and t' for t'>0. This interference is destructive for t'<0.Comment: 5 pages, 4 figures, to appear in PRB as a Rapid Communicatio

    Investigation of Non-Stable Processes in Close Binary Ry Scuti

    Full text link
    We present results of reanalysis of old electrophotometric data of early type close binary system RY Scuti obtained at the Abastumani Astrophysical Observatory, Georgia, during 1972-1990 years and at the Maidanak Observatory, Uzbekistan, during 1979-1991 years. It is revealed non-stable processes in RY Sct from period to period, from month to month and from year to year. This variation consists from the hundredths up to the tenths of a magnitude. Furthermore, periodical changes in the system's light are displayed near the first maximum on timescales of a few years. That is of great interest with regard to some similar variations seen in luminous blue variable (LBV) stars. This also could be closely related to the question of why RY Sct ejected its nebula.Comment: 11 pages, 6 figures, 2 table

    Control of Superconducting Correlations in High-Tc Cuprates

    Full text link
    A strategy to enhance d-wave superconducting correlations is proposed based on our numerical study for correlated electron models for high-Tc cuprates. We observe that the pairing is enhanced when the single-electron level around (pi,0) is close to the Fermi level E_F, while the d-wave pairing interaction itself contains elements to disfavor the pairing due to shift of the (pi,0)-level. Angle-resolved photoemission results in the cuprates are consistently explained in the presence of the d-wave pairing interaction. Our proposal is the tuning of the (pi,0)-level under the many-body effects to E_F by optimal design of band structure.Comment: 4 pages, 6 eps figure

    Quasiparticle photoemission intensity in doped two-dimensional quantum antiferromagnets

    Full text link
    Using the self-consistent Born approximation, and the corresponding wave function of the magnetic polaron, we calculate the quasiparticle weight corresponding to destruction of a real electron (in contrast to creation of a spinless holon), as a funtion of wave vector for one hole in a generalized t−Jt-J model and the strong coupling limit of a generalized Hubbard model. The results are in excellent agreement with those obtained by exact diagonalization of a sufficiently large cluster. Only the Hubbard weigth compares very well with photoemission measurements in Sr_2CuO_2Cl_2.Comment: 11 pages, latex, 3 figure

    Single Hole Green's Functions in Insulating Copper Oxides at Nonzero Temperature

    Full text link
    We consider the single hole dynamics in a modified t−Jt-J model at finite temperature. The modified model includes a next nearest (t′t') and next-next nearest (t′′t'') hopping. The model has been considered before in the zero temperature limit to explain angle resolved photo-emission measurements. We extend this consideration to the case of finite temperature where long-range anti-ferromagnetic order is destroyed, using the self-consistent Born approximation. The Dyson equation which relates the single hole Green's functions for a fixed pseudo-spin and for fixed spin is derived. The Green's function with fixed pseudo-spin is infrared stable but the Green's function with fixed spin is close to an infrared divergency. We demonstrate how to renormalize this Green's function in order to assure numerical convergence. At non-zero temperature the quasi-particle peaks are found to shift down in energy and to be broadened.Comment: 7 pages, RevTex, 5 Postscript figure

    Effect of magnetic frustration on single-hole spectral function in the t-t'-t''-J model

    Full text link
    We examine the effect of the magnetic frustration J' on the single-hole spectral function in the t-t'-t''-J model. At zero temperature, the exact diagonalization (ED) and the self-consistent Born approximation (SCBA) methods are used. We find that the frustration suppresses the quasiparticle (QP) weight at small momentum k, whereas the QP peak at k=(pi/2,pi/2) remains sharp. We also show the temperature dependence of the single-hole spectral function by using the ED method. It is found that the lineshapes at (pi/2,0) and (pi/2,pi/2) show different temperature dependence. These findings are consistent with the angle-resolved photoemission data on Sr2CuO2Cl2, and indicate the importance of the magnetic frustration on the electronic states of the insulating cuprates.Comment: 5 pages, 3 EPS figures, REVTeX, To be published in Phys. Rev. B, Vol. 59, Num. 3 (15 Jan. 1999

    Angle resolved photoemission spectroscopy of Sr_2CuO_2Cl_2 - a revisit

    Full text link
    We have investigated the lowest binding-energy electronic structure of the model cuprate Sr_2CuO_2Cl_2 using angle resolved photoemission spectroscopy (ARPES). Our data from about 80 cleavages of Sr_2CuO_2Cl_2 single crystals give a comprehensive, self-consistent picture of the nature of the first electron-removal state in this model undoped CuO_2-plane cuprate. Firstly, we show a strong dependence on the polarization of the excitation light which is understandable in the context of the matrix element governing the photoemission process, which gives a state with the symmetry of a Zhang-Rice singlet. Secondly, the strong, oscillatory dependence of the intensity of the Zhang-Rice singlet on the exciting photon-energy is shown to be consistent with interference effects connected with the periodicity of the crystal structure in the crystallographic c-direction. Thirdly, we measured the dispersion of the first electron-removal states along G->(pi,pi) and G->(pi,0), the latter being controversial in the literature, and have shown that the data are best fitted using an extended t-J-model, and extract the relevant model parameters. An analysis of the spectral weight of the first ionization states for different excitation energies within the approach used by Leung et al. (Phys. Rev. B56, 6320 (1997)) results in a strongly photon-energy dependent ratio between the coherent and incoherent spectral weight. The possible reasons for this observation and its physical implications are discussed.Comment: 10 pages, 8 figure

    Polaron Effects on Superexchange Interaction: Isotope Shifts of TNT_N, TCT_C, and T∗T^* in Layered Copper Oxides

    Full text link
    A compact expression has been obtained for the superexchange coupling of magnetic ions via intermediate anions with regard to polaron effects at both magnetic ions and intermediate anions. This expression is used to analyze the main features of the behavior of isotope shifts for temperatures of three types in layered cuprates: the Neel temperatures (TNT_N), critical temperatures of transitions to a superconducting state (TCT_C), and characteristic temperatures of the pseudogap in the normal state (T∗T^*).Comment: 4 pages, 1 figur

    Photoproduction of Long-Lived Holes and Electronic Processes in Intrinsic Electric Fields Seen through Photoinduced Absorption and Dichroism in Ca_3Ga_{2-x}Mn_xGe_3O_{12} Garnets

    Full text link
    Long-lived photoinduced absorption and dichroism in the Ca_3Ga_{2-x}Mn_xGe_3O_{12} garnets with x < 0.06 were examined versus temperature and pumping intensity. Unusual features of the kinetics of photoinduced phenomena are indicative of the underlying electronic processes. The comparison with the case of Ca_3Mn_2Ge_3O_{12}, explored earlier by the authors, permits one to finally establish the main common mechanisms of photoinduced absorption and dichroism caused by random electric fields of photoproduced charges (hole polarons). The rate of their diffusion and relaxation through recombination is strongly influenced by the same fields, whose large statistical straggling is responsible for a broad continuous set of relaxation components (observed in the relaxation time range from 1 to about 1000 min). For Ca_3Ga_{2-x}Mn_xGe_3O_{12}, the time and temperature dependences of photoinduced absorption and dichroism bear a strong imprint of structure imperfection increasing with x.Comment: 20 pages, 10 figure

    Density-induced BCS to Bose-Einstein crossover

    Get PDF
    We investigate the zero-temperature BCS to Bose-Einstein crossover at the mean-field level, by driving it with the attractive potential and the particle density.We emphasize specifically the role played by the particle density in this crossover.Three different interparticle potentials are considered for the continuum model in three spatial dimensions, while both s- and d-wave solutions are analyzed for the attractive (extended) Hubbard model on a two-dimensional square lattice. For this model the peculiar behavior of the crossover for the d-wave solution is discussed.In particular, in the strong-coupling limit when approaching half filling we evidence the occurrence of strong correlations among antiparallel-spin fermions belonging to different composite bosons, which give rise to a quasi-long-range antiferromagnetic order in this limit.Comment: 10 pages, 5 enclosed figure
    • …
    corecore