268 research outputs found

    Feynman Path Integral on the Noncommutative Plane

    Full text link
    We formulate Feynman path integral on a non commutative plane using coherent states. The propagator for a free particle exhibits UV cut-off induced by the parameter of non commutativity.Comment: 7pages, latex 2e, no figures. Accepted for publication on J.Phys.

    Isotropic representation of noncommutative 2D harmonic oscillator

    Full text link
    We show that 2D noncommutative harmonic oscillator has an isotropic representation in terms of commutative coordinates. The noncommutativity in the new mode, induces energy level splitting, and is equivalent to an external magnetic field effect. The equivalence of the spectra of the isotropic and anisotropic representation is traced back to the existence of SU(2) invariance of the noncommutative model.Comment: 15 pages, RevTex4, no figures; article format, improved version of the previous paper; new references and aknowledgements adde

    UV divergence-free QFT on noncommutative plane

    Full text link
    We formulate Noncommutative Qauntum Field Theory in terms of fields defined as mean value over coherent states of the noncommutative plane. No *-product is needed in this formulation and noncommutativity is carried by a modified Fourier transform of fields. As a result the theory is UV finite and the cutoff is provided by the noncommutative parameter theta.Comment: 6 pages, Latex, no figures. Accepted for publication in J.Phys.A. New references adde

    Actual and preferred place of death of home-dwelling patients in four European countries: making sense of quality indicators

    Get PDF
    Background: Dying at home and dying at the preferred place of death are advocated to be desirable outcomes of palliative care. More insight is needed in their usefulness as quality indicators. Our objective is to describe whether " the percentage of patients dying at home'' and "the percentage of patients who died in their place of preference'' are feasible and informative quality indicators. Methods and Findings: A mortality follow-back study was conducted, based on data recorded by representative GP networks regarding home-dwelling patients who died non-suddenly in Belgium (n = 1036), the Netherlands (n = 512), Italy (n = 1639) or Spain (n = 565). "The percentage of patients dying at home'' ranged between 35.3% (Belgium) and 50.6% (the Netherlands) in the four countries, while "the percentage of patients dying at their preferred place of death'' ranged between 67.8% (Italy) and 86.0% (Spain). Both indicators were strongly associated with palliative care provision by the GP (odds ratios of 1.55-13.23 and 2.30-6.63, respectively). The quality indicator concerning the preferred place of death offers a broader view than the indicator concerning home deaths, as it takes into account all preferences met in all locations. However, GPs did not know the preferences for place of death in 39.6% (the Netherlands) to 70.3% (Italy), whereas the actual place of death was known in almost all cases. Conclusion: GPs know their patients' actual place of death, making the percentage of home deaths a feasible indicator for collection by GPs. However, patients' preferred place of death was often unknown to the GP. We therefore recommend using information from relatives as long as information from GPs on the preferred place of death is lacking. Timely communication about the place where patients want to be cared for at the end of life remains a challenge for GPs

    p-Branes from Generalized Yang-Mills Theory

    Full text link
    We consider the reduced, quenched version of a generalized Yang-Mills action in 4k-dimensional spacetime. This is a new kind of matrix theory which is mapped through the Weyl-Wigner-Moyal correspondence into a field theory over a non-commutative phase space. We show that the ``classical'' limit of this field theory is encoded into the effective action of an open, (4k-1)-dimensional, bulk brane enclosed by a dynamical, Chern-Simons type, (4k-2)-dimensional, boundary brane. The bulk action is a pure volume term, while the boundary action carries all the dynamical degrees of freedom.Comment: 8 pages, LaTeX 2e, no figure

    TeV Mini Black Hole Decay at Future Colliders

    Full text link
    It is generally believed that mini black holes decay by emitting elementary particles with a black body energy spectrum. The original calculation lead to the conclusion that about the 90% of the black hole mass is radiated away in the form of photons, neutrinos and light leptons, mainly electrons and muons. With the advent of String Theory, such a scenario must be updated by including new effects coming from the stringy nature of particles and interactions.By taking for granted that black holes can be produced in hadronic collisions, then their decay must take into account that: (i) we live in a D3-Brane embedded into an higher dimensional bulk spacetime; (ii) fundamental interactions, including gravity, are unified at TeV energy scale. Thus, the formal description of the Hawking radiation mechanism has to be extended to the case of more than four spacetime dimensions and include the presence of D-branes. Furthermore, unification of fundamental interactions at an energy scale many order of magnitude lower than the Planck energy implies that any kind of fundamental particle, not only leptons, is expected to be emitted. A detailed understanding of the new scenario is instrumental for optimal tuning of detectors at future colliders, where, hopefully, this exciting new physics will be tested. In this article we review higher dimensional black hole decay, considering not only the emission of particles according to Hawking mechanism, but also their near horizon QED/QCD interactions. The ultimate motivation is to build up a phenomenologically reliable scenario, allowing a clear experimental signature of the event.Comment: 22 pages, 9 figures, 4 tables; ``quick review'' for Class. and Quantum Gra

    Gauge Theory of the String Geodesic Field

    Full text link
    A relativistic string is usually represented by the Nambu-Goto action in terms of the extremal area of a 2-dimensional timelike submanifold of Minkowski space. Alternatively, a family of classical solutions of the string equation of motion can be globally described in terms of the associated geodesic field. In this paper we propose a new gauge theory for the geodesic field of closed and open strings. Our approach solves the technical and conceptual problems affecting previous attempts to describe strings in terms of local field variables. The connection between the geodesic field, the string current and the Kalb-Ramond gauge potential is discussed and clarified. A non-abelian generalization and the generally covariant form of the model are also discussed.Comment: 38 pages, PHYZZX, UTS-DFT-92-2

    Editing activity for eliminating mischarged tRNAs is essential in mammalian mitochondria

    Get PDF
    Accuracy of protein synthesis is enabled by the selection of amino acids for tRNA charging by aminoacyl-tRNA synthetases (ARSs), and further enhanced by the proofreading functions of some of these enzymes for eliminating tRNAs mischarged with noncognate amino acids. Mouse models of editing-defective cytoplasmic alanyl-tRNA synthetase (AlaRS) have previously demonstrated the importance of proofreading for cytoplasmic protein synthesis, with embryonic lethal and progressive neurodegeneration phenotypes. Mammalian mitochondria import their own set of nuclear-encoded ARSs for translating critical polypeptides of the oxidative phosphorylation system, but the importance of editing by the mitochondrial ARSs for mitochondrial proteostasis has not been known. We demonstrate here that the human mitochondrial AlaRS is capable of editing mischarged tRNAs in vitro, and that loss of the proofreading activity causes embryonic lethality in mice. These results indicate that tRNA proofreading is essential in mammalian mitochondria, and cannot be overcome by other quality control mechanisms
    corecore