11,101 research outputs found
Recommended from our members
Race, Class, and College Access: Achieving Diversity in a Shifting Legal Landscape
This is a groundbreaking report examining how legal challenges to race-conscious admissions are influencing contemporary admissions practices at selective colleges and universities around the country. The report is especially timely in light of the U.S. Supreme Court decision to take a second look at the constitutionality of the University of Texas' admissions policy by granting review in Fisher v. University of Texas at Austin.Study findings are based on responses to a first-of-its-kind national survey of undergraduate admissions and enrollment management leaders administered in 2014 -- 15. Data reflect responses from 338 nonprofit four-year institutions that collectively enrolled 2.7 million students and fielded over 3 million applications for admission in 2013 -- 14. Among other findings, the authors examine the most widely used and effective diversity strategies; changes in admissions factors after the 2013 Fisher ruling and statewide bans on race-conscious admissions; and the most sought after research and guidance given the current legal and policy landscap
On the Naturalness of Higgs Inflation
We critically examine the recent claim that the Standard Model Higgs boson
could drive inflation in agreement with observations if has a strong coupling to the Ricci curvature scalar. We
first show that the effective theory approach upon which that claim is based
ceases to be valid beyond a cutoff scale , where is the
reduced Planck mass. We then argue that knowing the Higgs potential profile for
the field values relevant for inflation () requires knowledge of the ultraviolet completion of the SM beyond
. In absence of such microscopic theory, the extrapolation of the pure
SM potential beyond is unwarranted and the scenario is akin to other
ad-hoc inflaton potentials afflicted with significant fine-tuning. The
appealing naturalness of this minimal proposal is therefore lost.Comment: 9 pages. Replaced with published version, plus a footnote clarifying
the use of power counting estimate
Physical processes leading to surface inhomogeneities: the case of rotation
In this lecture I discuss the bulk surface heterogeneity of rotating stars,
namely gravity darkening. I especially detail the derivation of the omega-model
of Espinosa Lara & Rieutord (2011), which gives the gravity darkening in
early-type stars. I also discuss the problem of deriving gravity darkening in
stars owning a convective envelope and in those that are members of a binary
system.Comment: 23 pages, 11 figure, Lecture given to the school on the cartography
of the Sun and the stars (May 2014 in Besan\c{c}on), to appear in LNP, Neiner
and Rozelot edts V2: typos correcte
Defect chemistry and transport properties of BaxCe0.85M0.15O3-d
The site-incorporation mechanism of M3+ dopants into A2+B4+O3 perovskites controls the overall defect chemistry and thus their transport properties. For charge-balance reasons, incorporation onto the A2+-site would require the creation of negatively charged point defects (such as cation vacancies), whereas incorporation onto the B4+-site is accompanied by the generation of positively charged defects, typically oxygen vacancies. Oxygen-vacancy content, in turn, is relevant to proton-conducting oxides in which protons are introduced via the dissolution of hydroxyl ions at vacant oxygen sites. We propose here, on the basis of x-ray powder diffraction studies, electron microscopy, chemical analysis, thermal gravimetric analysis, and alternating current impedance spectroscopy, that nominally B-site doped barium cerate can exhibit dopant partitioning as a consequence of barium evaporation at elevated temperatures. Such partitioning and the presence of significant dopant concentrations on the A-site negatively impact proton conductivity. Specific materials examined are BaxCe0.85M0.15O3-d (x = 0.85 - 1.20; M = Nd, Gd, Yb). The compositional limits for the maximum A-site incorporation are experimentally determined to be: (Ba0.919Nd0.081)(Ce0.919Nd0.081)O3, (Ba0.974Gd0.026)(Ce0.872Gd0.128)O2.875, and Ba(Ce0.85Yb0.15)O2.925. As a consequence of the greater ability of larger cations to exist on the Ba site, the H2O adsorption and proton conductivities of large-cation doped barium cerates are lower than those of small-cation doped analogs
Higgs Inflation as a Mirage
We discuss a simple unitarization of Higgs inflation that is genuinely weakly
coupled up to Planckian energies. A large non-minimal coupling between the
Higgs and the Ricci curvature is induced dynamically at intermediate energies,
as a simple ratio of mass scales. Despite not being dominated by the Higgs
field, inflationary dynamics simulates the `Higgs inflation' one would get by
blind extrapolation of the low-energy effective Lagrangian, at least
qualitatively. Hence, Higgs inflation arises as an approximate `mirage' picture
of the true dynamics. We further speculate on the generality of this phenomenon
and show that, if Higgs-inflation arises as an effective description, the
details of the UV completion are necessary to extract robust quantitative
predictions.Comment: 21 pages, 2 figure
Comparative host specificity of human- and pig- associated Staphylococcus aureus clonal lineages.
Bacterial adhesion is a crucial step in colonization of the skin. In this study, we investigated the differential adherence to human and pig corneocytes of six Staphylococcus aureus strains belonging to three human-associated [ST8 (CC8), ST22 (CC22) and ST36(CC30)] and two pig-associated [ST398 (CC398) and ST433(CC30)] clonal lineages, and their colonization potential in the pig host was assessed by in vivo competition experiments. Corneocytes were collected from 11 humans and 21 pigs using D-squame® adhesive discs, and bacterial adherence to corneocytes was quantified by a standardized light microscopy assay. A previously described porcine colonization model was used to assess the potential of the six strains to colonize the pig host. Three pregnant, S. aureus-free sows were inoculated intravaginally shortly before farrowing with different strain mixes [mix 1) human and porcine ST398; mix 2) human ST36 and porcine ST433; and mix 3) human ST8, ST22, ST36 and porcine ST398] and the ability of individual strains to colonize the nasal cavity of newborn piglets was evaluated for 28 days after birth by strain-specific antibiotic selective culture. In the corneocyte assay, the pig-associated ST433 strain and the human-associated ST22 and ST36 strains showed significantly greater adhesion to porcine and human corneocytes, respectively (p<0.0001). In contrast, ST8 and ST398 did not display preferential host binding patterns. In the in vivo competition experiment, ST8 was a better colonizer compared to ST22, ST36, and ST433 prevailed over ST36 in colonizing the newborn piglets. These results are partly in agreement with previous genetic and epidemiological studies indicating the host specificity of ST22, ST36 and ST433 and the broad-host range of ST398. However, our in vitro and in vivo experiments revealed an unexpected ability of ST8 to adhere to porcine corneocytes and persist in the nasal cavity of pigs
Radon in Workplaces the Urgent Need of New Measurements and Devices
The existing passive radon monitors, their relative calibration facilities together with the past intercomparison exercises have been mission-oriented towards radon measurements in dwellings. These monitors have been successfully applied throughout the world for radon measurements in homes, characterized by temperatures in the range from 20 to 25°C and a relative humidity less than 50 R.H. A multitude of different problems may arise when these passive monitors are used in environment other than homes, such as in soil and in workplaces, where large humidity up to 100 RH and temperatures anywhere from 0°C to 40°C may be encountered. Under severe environmental conditions, different measurement errors may occur which have remained concealed to date. These errors may be caused by a drastic change of both the radon diffusivity through the and for the monitor housing respectively. permeation membranes or the radon absorption by the plastics, used for the track detector. For the compliance to the assessment of the occupational exposures, it is necessary to eliminate all the possible sources of errors, which may be conducive to litigation. Another important shortcoming of the existing passive monitors is the difficult to turn them on/off daily, as required for radon measurements in workplaces. Finally, most of the problems, listed above, can be solved by the exploitation of a new generation of passive monitors, known as Rn film-badges. These monitors are similar and often identical to neutron film-badges, which have proved to be very successful throughout the world for the personnel neutron dosimetry. In particular, the present paper will describe the unique characteristics of these radon film badges, such as compactness, fast time response, any desired response sensitivity, simplicity in turning them on and off, etc
- …