693 research outputs found
Louis Pasteur and Modern Industrial Stereochemistry
In the context of a brief discussion of the career of Louis Pasteur (who died 100 years ago), the applications of »Pasteurian Resolutions" to modern sterochemistry, especially in its industrial applications, will be presented
Asymmetric Chemical Synthesis of (R)- and (S)-Citramalate in High Enantiomeric Purity
Both enantiomers of dimethyl 2-acety1citramalate have been
asymmetrically synthesized in over 96% enantiomeric excess and
good overall chemical yield (500/0)from 2-keto-1,3-oxathianes 1a,
and 1b
Manipulating the torsion of molecules by strong laser pulses
A proof-of-principle experiment is reported, where torsional motion of a
molecule, consisting of a pair of phenyl rings, is induced by strong laser
pulses. A nanosecond laser pulse spatially aligns the carbon-carbon bond axis,
connecting the two phenyl rings, allowing a perpendicularly polarized, intense
femtosecond pulse to initiate torsional motion accompanied by an overall
rotation about the fixed axis. The induced motion is monitored by femtosecond
time-resolved Coulomb explosion imaging. Our theoretical analysis accounts for
and generalizes the experimental findings.Comment: 4 pages, 4 figures, submitted to PRL; Major revision of the
presentation of the material; Correction of ion labels in Fig. 2(a
Control and femtosecond time-resolved imaging of torsion in a chiral molecule
We study how the combination of long and short laser pulses, can be used to
induce torsion in an axially chiral biphenyl derivative
(3,5-difluoro-3',5'-dibromo-4'-cyanobiphenyl). A long, with respect to the
molecular rotational periods, elliptically polarized laser pulse produces 3D
alignment of the molecules, and a linearly polarized short pulse initiates
torsion about the stereogenic axis. The torsional motion is monitored in
real-time by measuring the dihedral angle using femtosecond time-resolved
Coulomb explosion imaging. Within the first 4 picoseconds, torsion occurs with
a period of 1.25 picoseconds and an amplitude of 3 degrees in excellent
agreement with theoretical calculations. At larger times the quantum states of
the molecules describing the torsional motion dephase and an almost isotropic
distribution of the dihedral angle is measured. We demonstrate an original
application of covariance analysis of two-dimensional ion images to reveal
strong correlations between specific ejected ionic fragments from Coulomb
explosion. This technique strengthens our interpretation of the experimental
data.Comment: 11 pages, 9 figure
Creating and Verifying a Quantum Superposition in a Micro-optomechanical System
Micro-optomechanical systems are central to a number of recent proposals for
realizing quantum mechanical effects in relatively massive systems. Here we
focus on a particular class of experiments which aim to demonstrate massive
quantum superpositions, although the obtained results should be generalizable
to similar experiments. We analyze in detail the effects of finite temperature
on the interpretation of the experiment, and obtain a lower bound on the degree
of non-classicality of the cantilever. Although it is possible to measure the
quantum decoherence time when starting from finite temperature, an unambiguous
demonstration of a quantum superposition requires the mechanical resonator to
be in or near the ground state. This can be achieved by optical cooling of the
fundamental mode, which also provides a method to measure the mean phonon
number in that mode. We also calculate the rate of environmentally induced
decoherence and estimate the timescale for gravitational collapse mechanisms as
proposed by Penrose and Diosi. In view of recent experimental advances,
practical considerations for the realization of the described experiment are
discussed.Comment: 19 pages, 8 figures, published in New J. Phys. 10 095020 (2008);
minor revisions to improve clarity; fixed possibly corrupted figure
Entanglement of photons
It is argued that the title of this paper represents a misconception.
Contrary to widespread beliefs it is electromagnetic field modes that are
``systems'' and can be entangled, not photons. The amount of entanglement in a
given state is shown to depend on redefinitions of the modes; we calculate the
minimum and maximum over all such redefinitions for several examples.Comment: 5 pages ReVTe
Current Switch by Coherent Trapping of Electrons in Quantum Dots
We propose a new transport mechanism through tunnel-coupled quantum dots
based on the coherent population trapping effect. Coupling to an excited level
by the coherent radiation of two microwaves can lead to an extremely narrow
current antiresonance. The effect can be used to determine interdot dephasing
rates and is a mechanism for a very sensitive, optically controlled current
switch.Comment: to appear in Phys. Rev. Let
Recommended from our members
AFM CHARACTERIZATION OF LASER INDUCED DAMAGE ON CDZNTE CRYSTAL SURFACES
Semi-conducting CdZnTe (or CZT) crystals can be used in a variety of detector-type applications. CZT shows great promise for use as a gamma radiation spectrometer. However, its performance is adversely affected by point defects, structural and compositional heterogeneities within the crystals, such as twinning, pipes, grain boundaries (polycrystallinity), secondary phases and in some cases, damage caused by external forces. One example is damage that occurs during characterization of the surface by a laser during Raman spectroscopy. Even minimal laser power can cause Te enriched areas on the surface to appear. The Raman spectra resulting from measurements at moderate intensity laser power show large increases in peak intensity that is attributed to Te. Atomic Force Microscopy (AFM) was used to characterize the extent of damage to the CZT crystal surface following exposure to the Raman laser. AFM data reveal localized surface damage in the areas exposed to the Raman laser beam. The degree of surface damage to the crystal is dependent on the laser power, with the most observable damage occurring at high laser power. Moreover, intensity increases in the Te peaks of the Raman spectra are observed even at low laser power with little to no visible damage observed by AFM. AFM results also suggest that exposure to the same amount of laser power yields different amounts of surface damage depending on whether the exposed surface is the Te terminating face or the Cd terminating face of CZT
Dispersive analysis of K_{L mu3} and K_{L e3} scalar and vector form factors using KTeV data
Using the published KTeV samples of K_L --> pi^{\pm} e^{\mp} nu and K_L -->
pi^{\pm} mu^{\mp} nu decays [1], we perform a reanalysis of the scalar and
vector form factors based on the dispersive parameterization [2,3]. We obtain
phase space integrals I^e_K = 0.15446 \pm 0.00025 and I^{mu}_K = 0.10219 \pm
0.00025. For the scalar form factor parameterization, the only free parameter
is the normalized form factor value at the Callan-Treiman point (C); our best
fit results in ln C = 0.1915 \pm 0.0122. We also study the sensitivity of C to
different parametrizations of the vector form factor. The results for the phase
space integrals and C are then used to make tests of the Standard Model.
Finally, we compare our results with lattice QCD calculations of F_K/F_pi and
f_+(0).Comment: 9 pages, 3 figures, to be published in PR
- …