316 research outputs found
Effectiveness of Realistic Mathematics Education Approach on Problem-Solving Skills of Students
Mathematics is concerned with the method used in the teaching and learning process in addition to issues encountered in the cognitive domain. The Philippines’ education system is still dominated by traditional mathematics teaching, which frequently overlooks the goal of mathematics education—to prepare students to deal successfully with real-life situations. This affects the declining performance of the students in their overall mathematical ability, especially in problem-solving. Hence, this study utilized a pre-experimental design to measure the effectiveness of the Realistic Mathematics Education (RME) approach in the problem-solving skills of the students in terms of understanding the problem, devising a plan, carrying out the plan, and looking back. Furthermore, the cluster sampling technique was used in choosing thirty-five grade 9 students and evaluated their problem-solving ability using a pre-test and post-test assessments. Based on the result, there is a highly significant difference in the mean pre-test and post-test performance of the respondent before and after using the RME approach in all the four phases of problem-solving (p-value=0.000). This implies that the RME is an effective teaching approach that successfully improved the mathematical proficiency of the students, especially in all aspects of problem-solving skills. The findings verify that educators can use the RME approach to expose their students to more collaborative teaching-learning processes that incorporate real-world scenarios. Future researchers may also conduct a similar study in face-to-face learning to comprehensively use the RME approach
HIV-1 subtype C Nef-mediated SERINC5 down-regulation significantly contributes to overall Nef activity
BACKGROUND: Nef performs multiple cellular activities that enhance HIV-1 pathogenesis. The role of Nef-mediated down-regulation of the host restriction factor SERINC5 in HIV-1 pathogenesis is not well-defined. We aimed to investigate if SERINC5 down-regulation activity contributes to HIV-1 subtype C disease progression, to assess the relative contribution of this activity to overall Nef function, and to identify amino acids required for optimal activity. We measured the SERINC5 down-regulation activity of 106 subtype C Nef clones, isolated from individuals in early infection, for which the Nef activities of CD4 and HLA-I down-regulation as well as alteration of TCR signalling were previously measured. The relationship between SERINC5 down-regulation and markers of disease progression, and the relative contribution of SERINC5 down-regulation to a Nef fitness model-derived E value (a proxy for overall Nef fitness in vivo), were assessed. RESULTS: No overall relationship was found between SERINC5 down-regulation and viral load set point (p = 0.28) or rate of CD4+ T cell decline (p = 0.45). CD4 down-regulation (p = 0.02) and SERINC5 down-regulation (p = 0.003) were significant determinants of E values in univariate analyses, with the greatest relative contribution for SERINC5 down-regulation, and only SERINC5 down-regulation remained significant in the multivariate analysis (p = 0.003). Using a codon-by-codon analysis, several amino acids were significantly associated with increased (10I, 11V, 38D, 51T, 65D, 101V, 188H and, 191H) or decreased (10K, 38E, 65E, 135F, 173T, 176T and, 191R) SERINC5 down-regulation activity. Site-directed mutagenesis experiments of selected mutants confirmed a substantial reduction in SERINC5 down-regulation activity associated with the mutation 173T, while mutations 10K, 135F, and 176T were associated with more modest reductions in activity that were not statistically significant. CONCLUSIONS: These results suggest that SERINC5 down-regulation is a significant contributor to overall Nef function and identify potential genetic determinants of this Nef function that may have relevance for vaccines or therapeutics
Analyzing symmetry breaking within a chaotic quantum system via Bayesian inference
Bayesian inference is applied to the level fluctuations of two coupled
microwave billiards in order to extract the coupling strength. The coupled
resonators provide a model of a chaotic quantum system containing two coupled
symmetry classes of levels. The number variance is used to quantify the level
fluctuations as a function of the coupling and to construct the conditional
probability distribution of the data. The prior distribution of the coupling
parameter is obtained from an invariance argument on the entropy of the
posterior distribution.Comment: Example from chaotic dynamics. 8 pages, 7 figures. Submitted to PR
Capillary Bridge Formation and Breakage: A Test to Characterize Antiadhesive Surfaces
In order to characterize very weak adhesive surfaces, we have developed a
quantitative test inspired by the Johnson, Kendall, and Roberts adhesion test
for soft adhesives, which relies on the formation and then the rupture of a
capillary bridge between the surface to be tested and a liquid bath. Both the
shape and the kinetics of breakage of the capillary bridge for various coatings
put into contact with liquids of various viscosities and surface tensions have
been studied. Several pull off regimes can be distinguished. For low pull off
velocities, a quasi-static regime is observed, well described by capillary
equations and sensitive to the hysteresis of the contact angle of the fluid on
the coating. Above a critical pull off velocity that depends on the fluid
viscosity, a dynamic regime is observed, characterized by the formation of a
flat pancake of fluid on the coating that recedes more slowly than the
capillary bridge itself. After the breakage of the capillary bridge, a small
drop can remain attached to the surface. The volume of this drop depends on the
dynamical regime and is strongly affected by very small differences between the
coatings. The aptitude of this test in characterizing very weakly adhesive
surfaces is exemplified by a comparison between three different perfluorinated
coatings
Fam65b is a new transcriptional target of FOXO1 that regulates RhoA signaling for T lymphocyte migration
Forkhead box Os (FOXOs) transcription factors favor both T cell quiescence and trafficking through their control of the expression of genes involved in cell cycle progression, adhesion and homing. Here, we report that the product of the fam65b gene is a new transcriptional target of FOXO1 that regulates RhoA activity. We show that Fam65b binds the small GTPase RhoA via a non canonical domain and represses its activity by decreasing its GTP loading. As a consequence, Fam65b negatively regulates chemokine-induced responses such as adhesion, morphological polarisation and migration. Therefore, these results show the existence of a new functional link between FOXO1 and RhoA pathways, through which the FOXO1 target Fam65b tonically dampens chemokine-induced migration by repressing RhoA activity
Pathogenic Mouse Hepatitis Virus or Poly(I:C) Induce IL-33 in Hepatocytes in Murine Models of Hepatitis.
International audienceThe IL-33/ST2 axis is known to be involved in liver pathologies. Although, the IL-33 levels increased in sera of viral hepatitis patients in human, the cellular sources of IL-33 in viral hepatitis remained obscure. Therefore, we aimed to investigate the expression of IL-33 in murine fulminant hepatitis induced by a Toll like receptor (TLR3) viral mimetic, poly(I:C) or by pathogenic mouse hepatitis virus (L2-MHV3). The administration of poly(I:C) plus D-galactosamine (D-GalN) in mice led to acute liver injury associated with the induction of IL-33 expression in liver sinusoidal endothelial cells (LSEC) and vascular endothelial cells (VEC), while the administration of poly(I:C) alone led to hepatocyte specific IL-33 expression in addition to vascular IL-33 expression. The hepatocyte-specific IL-33 expression was down-regulated in NK-depleted poly(I:C) treated mice suggesting a partial regulation of IL-33 by NK cells. The CD1d KO (NKT deficient) mice showed hepatoprotection against poly(I:C)-induced hepatitis in association with increased number of IL-33 expressing hepatocytes in CD1d KO mice than WT controls. These results suggest that hepatocyte-specific IL-33 expression in poly(I:C) induced liver injury was partially dependent of NK cells and with limited role of NKT cells. In parallel, the L2-MHV3 infection in mice induced fulminant hepatitis associated with up-regulated IL-33 expression as well as pro-inflammatory cytokine microenvironment in liver. The LSEC and VEC expressed inducible expression of IL-33 following L2-MHV3 infection but the hepatocyte-specific IL-33 expression was only evident between 24 to 32h of post infection. In conclusion, the alarmin cytokine IL-33 was over-expressed during fulminant hepatitis in mice with LSEC, VEC and hepatocytes as potential sources of IL-33
Vascular Smooth Muscle Cell Stiffness and Adhesion to Collagen I Modified by Vasoactive Agonists
In vascular smooth muscle cells (VSMCs) integrin-mediated adhesion to extracellular
matrix (ECM) proteins play important roles in sustaining vascular tone and resistance.
The main goal of this study was to determine whether VSMCs adhesion to type I collagen
(COL-I) was altered in parallel with the changes in the VSMCs contractile state induced by
vasoconstrictors and vasodilators. VSMCs were isolated from rat cremaster skeletal muscle
arterioles and maintained in primary culture without passage. Cell adhesion and cell E-modulus
were assessed using atomic force microscopy (AFM) by repetitive nano-indentation of
the AFM probe on the cell surface at 0.1 Hz sampling frequency and 3200 nm Z-piezo travelling
distance (approach and retraction). AFM probes were tipped with a 5 μm diameter
microbead functionalized with COL-I (1mg\ml). Results showed that the vasoconstrictor angiotensin
II (ANG-II; 10−6
) significantly increased (p<0.05) VSMC E-modulus and adhesion
probability to COL-I by approximately 35% and 33%, respectively. In contrast, the vasodilator
adenosine (ADO; 10−4
) significantly decreased (p<0.05) VSMC E-modulus and adhesion
probability by approximately −33% and −17%, respectively. Similarly, the NO donor
(PANOate, 10−6 M), a potent vasodilator, also significantly decreased (p<0.05) the VSMC
E-modulus and COL-I adhesion probability by −38% and −35%, respectively. These observations
support the hypothesis that integrin-mediated VSMC adhesion to the ECM protein
COL-I is dynamically regulated in parallel with VSMC contractile activation. These data suggest
that the signal transduction pathways modulating VSMC contractile activation and relaxation,
in addition to ECM adhesion, interact during regulation of contractile state
Ezrin Is Highly Expressed in Early Thymocytes, but Dispensable for T Cell Development in Mice
Ezrin/radixin/moesin (ERM) proteins are highly homologous proteins that function to link cargo molecules to the actin cytoskeleton. Ezrin and moesin are both expressed in mature lymphocytes, where they play overlapping roles in cell signaling and polarity, but their role in lymphoid development has not been explored.We characterized ERM protein expression in lymphoid tissues and analyzed the requirement for ezrin expression in lymphoid development. In wildtype mice, we found that most cells in the spleen and thymus express both ezrin and moesin, but little radixin. ERM protein expression in the thymus was differentially regulated, such that ezrin expression was highest in immature thymocytes and diminished during T cell development. In contrast, moesin expression was low in early thymocytes and upregulated during T cell development. Mice bearing a germline deletion of ezrin exhibited profound defects in the size and cellularity of the spleen and thymus, abnormal thymic architecture, diminished hematopoiesis, and increased proportions of granulocytic precursors. Further analysis using fetal liver chimeras and thymic transplants showed that ezrin expression is dispensable in hematopoietic and stromal lineages, and that most of the defects in lymphoid development in ezrin(-/-) mice likely arise as a consequence of nutritional stress.We conclude that despite high expression in lymphoid precursor cells, ezrin is dispensable for lymphoid development, most likely due to redundancy with moesin
Phospholipase C–mediated hydrolysis of PIP2 releases ERM proteins from lymphocyte membrane
Mechanisms controlling the disassembly of ezrin/radixin/moesin (ERM) proteins, which link the cytoskeleton to the plasma membrane, are incompletely understood. In lymphocytes, chemokine (e.g., SDF-1) stimulation inactivates ERM proteins, causing their release from the plasma membrane and dephosphorylation. SDF-1–mediated inactivation of ERM proteins is blocked by phospholipase C (PLC) inhibitors. Conversely, reduction of phosphatidylinositol 4,5-bisphosphate (PIP2) levels by activation of PLC, expression of active PLC mutants, or acute targeting of phosphoinositide 5-phosphatase to the plasma membrane promotes release and dephosphorylation of moesin and ezrin. Although expression of phosphomimetic moesin (T558D) or ezrin (T567D) mutants enhances membrane association, activation of PLC still relocalizes them to the cytosol. Similarly, in vitro binding of ERM proteins to the cytoplasmic tail of CD44 is also dependent on PIP2. These results demonstrate a new role of PLCs in rapid cytoskeletal remodeling and an additional key role of PIP2 in ERM protein biology, namely hydrolysis-mediated ERM inactivation
Recommended from our members
Spinal muscular atrophy diagnosis and carrier screening from genome sequencing data.
PURPOSE: Spinal muscular atrophy (SMA), caused by loss of the SMN1 gene, is a leading cause of early childhood death. Due to the near identical sequences of SMN1 and SMN2, analysis of this region is challenging. Population-wide SMA screening to quantify the SMN1 copy number (CN) is recommended by the American College of Medical Genetics and Genomics. METHODS: We developed a method that accurately identifies the CN of SMN1 and SMN2 using genome sequencing (GS) data by analyzing read depth and eight informative reference genome differences between SMN1/2. RESULTS: We characterized SMN1/2 in 12,747 genomes, identified 1568 samples with SMN1 gains or losses and 6615 samples with SMN2 gains or losses, and calculated a pan-ethnic carrier frequency of 2%, consistent with previous studies. Additionally, 99.8% of our SMN1 and 99.7% of SMN2 CN calls agreed with orthogonal methods, with a recall of 100% for SMA and 97.8% for carriers, and a precision of 100% for both SMA and carriers. CONCLUSION: This SMN copy-number caller can be used to identify both carrier and affected status of SMA, enabling SMA testing to be offered as a comprehensive test in neonatal care and an accurate carrier screening tool in GS sequencing projects
- …