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ABSTRACT 

 

Forkhead box Os (FOXOs) transcription factors favor both T cell quiescence and 

trafficking through their control of the expression of genes involved in cell cycle 

progression, adhesion and homing. Here, we report that the product of the fam65b gene 

is a new transcriptional target of FOXO1 that regulates RhoA activity. We show that 

Fam65b binds the small GTPase RhoA via a non canonical domain and represses its 

activity by decreasing its GTP loading. As a consequence, Fam65b negatively regulates 

chemokine-induced responses such as adhesion, morphological polarisation and 

migration. Therefore, these results show the existence of a new functional link between 

FOXO1 and RhoA pathways, through which the FOXO1 target Fam65b tonically 

dampens chemokine-induced migration by repressing RhoA activity. 



For P
ee

r R
ev

iew
. D

o n
ot d

ist
rib

ute
. D

es
tro

y a
fte

r u
se

.

3 
 

 

INTRODUCTION 

 

Efficient T-cell adaptive immune responses take place in secondary lymphoid organs such as 

lymph nodes (LN). Thus, circulating T lymphocytes have to leave the blood stream to home 

in LN through high endothelial venules (HEVs) and perform their surveillance task. This 

motile behavior necessitates a tight control of expression of some cell surface proteins such as 

the adhesive molecules CD62L and LFA-1, and the CCR7 chemokine receptor (1). In 

addition, many signaling pathways responsible for profound alterations in T lymphocyte 

morphology are activated during this migratory process and during motility inside LN (2). 

Using a large scale study of the genes that are specifically controlled by FOXO1 in 

human T cells, we have previously shown that FOXO1 regulates a much larger set of genes 

than previously expected. In addition to controlling a specific category of genes involved in T 

lymphocyte quiescence and survival, FOXO1 also controls expression of the CD62L and 

CCR7 homing receptors (3). These results have been largely confirmed in murine systems 

(reviewed in 4). However, no putative transcriptional targets of FOXO1 involved in the 

control of signals transduced downstream these homing receptors have been identified so far. 

Here, we describe the function of a new gene controlled by FOXO1 called fam65b that 

fulfils such a function. In resting T cells, we report that Fam65b negatively regulates 

adhesion, polarisation and migration. Mechanistically, we show that Fam65b represses these 

responses by inhibiting RhoA activity, a GTPase particularly important for cell migration (5). 

This shows the existence of a novel and unsuspected link between FOXO1 and RhoA 

pathways. Taken together, our results demonstrate that Fam65b is a target gene of FOXO1 

that regulates the triggering threshold of RhoA-dependent chemokine responses. 
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Materials and Methods 

 

 

In silico analysis 

The following publicly accessed databases were used: BLAST, UniGene, GeneCards, 

GeneAtlas, Clustal, Pfam, InterProScan, PSORT II Prediction, Panther and PROSITE. 

Accession numbers are: fam65b (UGID:1775160) 

(http://www.ncbi.nlm.nih.gov/UniGene/clust.cgi?ORG=Hs&CID=559459); Fam65b isoform 

1 (Fam65b(1), 140 kDa, NP_055537.2); Fam65b isoform 2 (Fam65b(2), 85 kDa, 

NP_056948.2) (http://www.ncbi.nlm.nih.gov.gate2.inist.fr/protein?term=Fam65b). 

 

qRT-PCR 

Total RNA was prepared using RNeasy mini kit (Qiagen). cDNA was produced with the 

Advantage RT-for-PCR kit (Clontech Laboratories) using 1 µg of total RNA and random 

hexamer priming in a final volume of 20 µl. Real-time quantitative PCR was performed by 

using the LightCycler FastStart DNA Master plus SYBRGreen kit (Roche Diagnostics). Genes 

of interest were detected using primers that had been designed with the Oligo6 software 

(Molecular Biology Insights) and optimized to generate a single amplicon of 80–130 

nucleotides. The sequences of the primers used in qRT-PCR experiments are the following: 

ppia (F): 5’- GGT GAC TTC ACA CGC CAT AAT G -3’; ppia (R): 5’- ACA AGA TGC 

CAG GAC CCG TAT -3’; fam65b (F): 5’-GCG GAG TTT AAC CTC AGC AG-3’; fam65b 

(R): 5’-CCT TCA GGT GTG ACT TTG GC-3’; iso1(F): 5’- GTC CCC TTC ACC CAA GT-

3’; iso1(R): 5’- GGG TTC TCT GGC ATA TAA AAG-3’; iso2(F): 5’- CGC AAG AAT 

GCAT ACA AAC-3’; iso2(R): 5’- GAA GGC AGT TTG AGC GA-3’. 
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Luciferase assays 

The FOXO1 enhancer in the iso1 (130 650-131 815) and iso2 promoter region (164 220-

165 360) was amplified from human genomic DNA using the following set of primers: iso1-

KpnI: 5’-ATACATGGTACCATGTTCCCTTTCGGCTAATGTCTCA-3’ and iso1-BglII: 5’- 

ATGTATAGATCTGACGGCTCCTTGTCATGTCAGGGGC-3; iso2-KpnI: 5’-

ATACATGGTACCGTCAAATTGAGTACAGAAAGAACAG-3’ and iso2-BglII: 5’-

ATGTATAGATCTCTCAAAGCTACGCGAAGCAGCTCAG-3’). DNA was amplified for 

30 cycles (94°C 30 s, 68°C 30 s) in 2× buffer with 1.5 mM MgCl2, 0.25 mM dNTPs, 0.5 µM 

each primer, 100 ng genomic DNA, and 5 U pfx platinium (Invitrogen) in a total volume of 50 

µl. The amplified sample was digested with KpnI and BglII and introduced into the pGL3 

vector (Promega) opened by the same enzymes. Jurkat T antigen cells (5x106/well) were co-

transfected with Firefly luciferase reporter construct (5 µg), CMV-Renilla luciferase reporter 

construct (0.1 µg) and FOXO1(3A)-GFP. 24 h after transfection, cells were lysed in passive 

cell lysis buffer (500 µl) and luciferase activity was assayed using the Dual-Luciferase 

Reporter assay system (Promega) as per the manufacturer’s instructions. 

 

Constructs 

The pEGFP-C3-RhoAN19 constructs was provided by M.R. Philips (New York University 

School of Medicine, USA). The FOXO1(3A)-GFP and FOXO1(3A,H215R)-GFP plasmids 

were previously described (3, 6). Lentiviral vectors TRIPiziE encoding GFP or FOXO1(3A)-

GFP were described (3). Fam65b(2) was PCR-amplified using a V5-tagged Fam65b vector 

(7) as a template; the PCR fragment was then introduced into pEGFP-N1 vector (Clontech). 

Fam65b(1) was PCR-amplified using T lymphocyte cDNA as a template and similarly 
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introduced into pEGFP-N1. V5-tagged Fam65b(2) truncated mutants were described (7). 

 

ChIP assays 

JTag cells infected with lentiviral vectors encoding GFP or FOXO1(3A)-GFP were used three 

days later for some ChIP experiments performed with the Chromatin Immunoprecipitation 

(ChIP) assay kit (Millipore) according to the manufacturer’s instructions. Anti-GFP and 

control irrelevant rabbit IgG were purchased from Abcam. DNA was extracted using a 

phenol/chloroform method. PCR reactions were conducted using the ampliTaq Gold kit with 

Gene Amp using the following parameters: 30 cycles (94°C 30 s, 58°C 1 min, 72°C 1.5 min) 

and the indicated primers (Supplemental Fig. 2B, C). Migration of PCR products was then 

performed with 2.5% agarose gels.  

 

Yeast two-hybrid screen 

Yeast two-hybrid screening was performed by Hybrigenics (Paris, France) using full-length 

Fam65b(2) as bait to screen a random-primed human CD4+ CD8+ thymocytes cDNA library. 

 

Cells 

Human PBT were purified from the blood of healthy donors as described (8). Jurkat T Ag and 

293T cells were cultivated in complete RPMI medium. 

 

DNA and RNAi transfections 

293T cells were transfected with Lipofectamine2000 (Invitrogen) according to the 

manufacturer’s instructions. 2.106 Jurkat T antigen cells were nucleofected with 5 μg DNA 

using the Amaxa system (Lonza) (kit V, program X-001). 5.106 PBT per cuvette were 

nucleofected with 10 µg DNA of the indicated construct using Amaxa and the U14 program. 
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For RNAi experiments, 2.106 PBT per cuvette were nucleofected with 2 µl of a 100 µM 

solution of OTP smartpool RNAi (Dharmacon) directed against human Fam65b or non-

targeting sequences as a control. Cells were rested for 10 min in RPMI at 37 °C and then 

supplemented with complete RPMI medium containing human AB serum and 5 U/ml IL-7. 

Cells were then tested for functional experiments 3 days after nucleofection when the level of 

Fam65b knock-down was maximal. 

 

Biochemistry 

Protein expression levels of Fam65b were analysed by Western blot as described (8). Both 

Fam65b isoforms were revealed by immunoblotting with anti-Fam65b (Abnova). Other 

blotting antibodies were anti-RhoA (Cytoskeleton) and anti-β actin (Sigma) followed by goat-

anti-mouse-HRP (BioRad) incubation and ECL revelation. 

For pull-down assays, beads containing GST-tagged RhoA (Cytoskeleton) were 

incubated with 1 mM GDP or 0.2 mM GTPγS in the presence of 15 mM EDTA at 30 °C for 

15 min and then locked in the GDP or GTPγS -bound conformation by supplementing 60 mM 

MgCl2. They were then added to the cleared lysate of Fam65b-GFP -expressing 293T cells in 

the following buffer: 100 mM NaCl, 50 mM Tris-HCl (pH 7.4), 1% NP-40, 10% glycerol, 2 

mM MgCl2 in the presence of Complete protease inhibitors. For pull-down assays on PBT, 

50.106 cells were stimulated with 200 ng/ml CCL19 for different times and the lysates were 

similarly submitted to a pull-down assay using 5 μg GST or GST-RhoA coated on glutathione 

beads. Alternatively, His-RhoA or His-RhoAL63 proteins (Cytoskeleton) were loaded on 

LiquiChip® Penta-His beads (Qiagen) according to the manufacturer's instructions and put in 

presence of GST-Fam65b(2) recombinant protein (Abnova) in PBS containing 1% BSA. All 

samples were then agitated for 1h, washed and processed as described above. Membranes 

were blotted with anti-GFP (living colors, Molecular Probes), anti-V5 (Invitrogen), anti-His 
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(Invitrogen), anti-Fam65b (Abnova) or anti-GST (Amersham) antibodies. Goat anti-mouse or 

anti-rabbit antibodies (BioRad) conjugated to HRP were then used and membranes were 

revealed by ECL. 

 

RhoA activation assay 

RhoA-GTP levels were measured using the G-LISATM RhoA activation assay (Cytoskeleton). 

PBT stimulated or not with CCL19 (200 ng/ml) for 30 sec were lysed for 30 min with 

occasional stirring in the following lysis buffer in the presence of complete protease 

inhibitors: 50 mM Hepes, 1% Triton-X100, 0.5% deoxycholate, 0.05% SDS, 500 mM NaCl, 

10 mM MgCl2, 2 mM EGTA, 20 mM Benzamidine. Protein concentrations were quantified 

according to the manufacturer's recommendations. Equal amounts of proteins were added in 

triplicate to a 96-well plate coated with the RhoA binding domain of Rhotekin and incubated 

at 4 °C for 1 hour. Wells containing only some lysis buffer were used as blank samples. After 

washing, the amount of RhoA-GTP bound to each well was revealed by an anti-RhoA 

antibody followed by a secondary HRP-labeled antibody and detection of HRP. Signals were 

measured with a microplate spectrophotometer by quantifying absorbance at 490 nm.   

 

Nucleotide Exchange Kinetics Assay 

Nucleotide exchange activity on 2 µM of RhoA was measured with or without 2 µM of Dbs 

using a RhoGEF exchange assay kit (Cytoskeleton, Inc.) according to the manufacturer 

instructions, except that 6His-RhoA was produced in our laboratory (9). Fluorescence 

measurements were performed at 25 ˚C in a 384-well plate using a FlexStation 3 (Molecular 

Devices) with excitation and emission wavelengths of 360 and 440 nm, respectively. The 

exchange reaction was initiated by addition of Dbs, with or without 0.6 µM of recombinant 

Fam65b (Abnova) and monitored for 30 min. kobs were calculated by fitting the fluorescence 
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changes to a single exponential, using the Prism 5 software (GraphPad Software, Inc.).  

 

Flow cytometry 

PBT were stimulated at 37 °C with 100 ng/ml CCL19 for different times, fixed with 4% 

paraformaldehyde for 10 min, permeabilised with 0.1% saponin and incubated with 

phalloidin-TRITC (Sigma). The F-actin content was then measured in each sample by flow 

cytometry using a FACScan (Becton Dickinson). JTag cells nucleofected with GFP, FOXO1-

GFP, FOXO1(3A)-GFP or FOXO1(3A,H215R)-GFP were similarly processed for flow 

cytometry using an anti-Fam65b antibody (Santa Cruz).     

 

Immunocytochemistry 

JTag cells or PBT unstimulated or stimulated with 100 ng/ml CCL19 for different times, were 

fixed with 4% paraformaldehyde (PFA) for 10 mins, permeabilised with 0.1% Triton-X100 

and incubated with a combination of phalloidin-Alexa-Fluor350 (Invitrogen), anti-moesin (C-

15, Santa Cruz) and anti-Fam65b (Antibody Research, Inc. or Santa Cruz). Because we have 

confirmed that PFA fixation does not work for RhoA staining (10), anti-RhoA (26C4, Santa 

Cruz) immunofluorescence was performed using a 10% trichloroacetic acid (TCA) fixation 

method together with a P-ERM (Cell Signaling Technology) staining to localize the uropod. 

Unfortunately, Fam65b staining does not work with TCA fixation which precludes the 

possibility of performing a RhoA-Fam65b co-staining. DAPI or Hoechst stainings (blue) were 

used in some cases to stain the nucleus. Primary antibodies were revealed by biotin-, FITC- or 

Texas Red- conjugated anti-rabbit, anti-mouse or anti-goat IgG antibodies (Jackson 

ImmunoResearch). Streptavidin-Alexa fluorTM 568 (Invitrogen) was used to reveal secondary 

biotinylated antibodies. T lymphocytes were then allowed to sediment, mounted on glass 

coverslips using FluorSaveTM Reagent (Calbiochem) and imaged by confocal microscopy. 
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Adhesion assays 

For under-flow adhesion assays, CT or Fam65b KD T cells were resuspended at 106/ml in 

standard adhesion buffer (PBS, 1 mM CaCl2, 1 mM MgCl2, 10 % FCS, pH 7.2). Cellular 

adhesive interactions were studied in underflow conditions with the BioFlux 200 system 

(Fluxion Biosciences). A 48-well plate microfluidics was first co-coated overnight at room 

temperature with human E-selectin (5 µg/ml; R&D system) and human ICAM-1 (5 µg/ml; 

R&D system) in PBS. Before use, microfluidic channels were washed with PBS, coated with 

2 µM CCL19 in PBS for 3 h at room temperature and the assay was done at a wall shear stress 

force of 2 dyne/cm2. After extensive washing of channels with adhesion buffer, the behavior 

of interacting lymphocytes was recorded on digital drive with a fast CCD videocamera (25 

frames/sec, capable of 1/2 subframe 20 msec recording) and analyzed subframe by subframe. 

Single areas of 0.2 mm2 were recorded for at least 120 sec. Interactions of 20 msec or longer 

were considered significant and scored. Lymphocytes that remained firmly adhesive for at 

least 1 sec were considered fully arrested. Cells arrested for at least 1 sec or 10 sec were 

scored. 

In vivo lymphocyte arrest on blood vessels endothelial cells was studied by intravital 

microscopy as described (11). Briefly, CT or Fam65b KD T cells (in DMEM without sodium 

bicarbonate supplemented with 20 mM HEPES, 5 % FCS, pH 7.1) were labelled with either 

CMFDA (1 min at 37 °C) or CMTMR (3 min at 37 °C). 15 x 106 labelled cells were injected 

i.v. in the tail vein of C57BL/6J mice. In situ video-microscopic analyses were carried out in 

Peyer’s patches HEVs. Experiments were recorded on digital videotape with a high sensitive 

fast SIT videocamera (25 frames / sec). Cell behavior was analysed over a period of 20-30 

min starting 2 min after i.v. injection. T lymphocytes that remained firmly arrested for at least 

10 sec were scored.   
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Polarization 

T cell polarization assays and the analysis of the 4 categories of morphological changes 

elicited by CCL19 stimulation were performed as described (12). 

 

Migration 

Nucleofected PBT were placed on the upper chamber of a 5-µm diameter transwell (Nunc). 

Different concentrations of CCL19 were put in the lower chamber and the cells were allowed 

to migrate for 3 hours. Lymphocytes that had reached the lower chamber were then harvested, 

put in a FACScan tube together with an equal amount of flow check fluorspheres (Beckman 

Coulter). The number of migrating cells was analysed by flow cytometry relative to the 

number of beads. 

 

Statistics 

Means +/- SE are shown when indicated. Statistically significant differences between groups 

were assessed with an unpaired Student’s t test calculated with KaleidaGraph. 
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Results 

 

Fam65b is induced by FOXO1 

 We initially identified fam65b as a major response gene of FOXO1 by microarray 

experiments in human T lymphocytes (3). Fam65b (Family with sequence similarity 65 

member b) also called c6orf32, has two paralogs (Fam65a and Fam65c), all three molecules 

being well conserved from Zebra fish to humans (Supplemental Fig. 1A), especially in their 

N-terminal regions. In humans, this gene is located on chromosome 6 and encodes two 

mRNA isoforms that give rise to two proteins (Supplemental Fig. 1B). A UniGene search for 

the distribution of the transcripts indicated that fam65b mRNA levels are particularly high in 

blood cells and adult tissues of hematopoietic origin such as the secondary lymphoid organs 

(Supplemental Fig. 1C). 

As presented in supplemental figure 2, the fam65b gene encodes two mRNA isoforms. 

To further characterize the regulation of Fam65b expression by FOXO1, we designed PCR 

primers amplifying specifically each isoform, and followed their expression in the Jurkat T 

cell line expressing a constitutively active nuclear form of FOXO1 (FOXO1(3A)). As shown 

in figure 1A as measured by qRT-PCR, Jurkat cells expressing FOXO1(3A) exhibited a 4.5 ± 

0.1 and 6.5 ± 3 (mean ± S.E.M.) fold increase in Fam65b isoform 1 and isoform 2 transcript 

levels, respectively. The FOXO1(3A,H215R) mutant, which exhibits impaired DNA binding, 

induced only a marginal increase of 2 ± 0.1 for isoform 1 and 1.75 ± 0.35 for isoform 2 in 

transcript levels. 

The two fam65b transcripts have their own promoters that have been identified using 

the Ensembl database (Supplemental Fig. 2A). To determine whether FOXO1 directly 

controlled fam65b gene transcription, we searched for evolutionary conserved FOXO1-

binding site in the two fam65b promoters with the Genomatix program. We found one 
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putative FOXO1 site within the 500 bp of iso1 promoter region and four within iso2 that were 

conserved between mouse and human (Supplemental Fig. 2B, C). To further demonstrate that 

FOXO1 does indeed regulate Fam65b expression, luciferase reporter plasmids of fam65b 

were constructed for each promoter and co-transfected with FOXO1(3A) vector into Jurkat 

cells. The results showed that the luciferase activity of isoform 1 promoter (3.5 ± 0.4) and 

isoform 2 promoter (8.9 ± 0.9) was significantly increased by FOXO1(3A) (Fig. 1B). To 

investigate further whether FOXO1 directly binds these DNA elements, we used Jurkat cells 

transduced with FOXO1(3A) fused with GFP or GFP alone to perform chromatin 

immunoprecipitation experiments. For the promoter of isoform 1, a genomic fragment 

containing the FOXO1 site but not an irrelevant sequence is selectively enriched with anti-

GFP antibody only in FOXO1(3A)-transduced cells (Fig. 1C). For the isoform 2 promoter, 

only the most proximal 5’ fragment is detected with anti-GFP in FOXO1(3A)-transduced 

cells, demontrating that only this site is active in T lymphocytes for regulating isoform 2 

expression by FOXO1. These findings demonstrate that the two isoforms of Fam65b are 

direct FOXO1 targets in T cells. 

We next aimed at determining whether FOXO1 also increases Fam65b protein levels 

by transfecting Jurkat cells with different FOXO1-GFP constructs (FOXO1-GFP, 

FOXO1(A3)-GFP, FOXO1(3A,H215R)) or GFP alone. Fam65b levels were then measured 

by flow cytometry in the different cell populations discriminated by the expression of GFP. 

The results show that the constitutively active form of FOXO1 induces Fam65b expression 

whereas the wild type form of FOXO1 fails to trigger this expression (Fig. 1D). This is in 

accordance with its complete exclusion of the nucleus in this cellular model (Fig. 1E) due to 

the fact that Jurkat cells, that lack expression of the lipid phosphatase PTEN, have a tonic 

inactivation of wild-type FOXO1, even when it is overexpressed (3). As expected, the 

FOXO1(3A,H215R) molecule was poorly active as compared to the fully active FOXO1(A3) 
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mutant (Fig. 1D) despite its nuclear localization (Fig. 1E). Moreover, we show that Fam65b 

induced by active FOXO1 exhibits a cytosolic distribution (Fig. 1E). 

 Altogether, these results demonstrate that FOXO1 directly controls fam65b 

transcription and the expression of this protein in T lymphocytes. 

 

Fam65b negatively regulates adhesion, polarization and migration upon chemokine 

stimulation 

In unstimulated T cells, we and others have previously shown that FOXO1 controls the 

expression of CCR7 which binds the homeostatic chemokines CCL19 and CCL21 (3, 13). 

CCR7 is crucial for lymph node homing (14) or during intra-nodal motility (15-17). Because 

we demonstrate here that FOXO1 also controls Fam65b expression in resting T lymphocytes, 

we next tested whether Fam65b plays a role in CCL19 responses. 

 Using a RNAi approach (Supplemental Fig. 3A), we first tested whether Fam65b plays 

a role in T cell adhesion upon CCL19 stimulation. Adhesion under flow upon chemokine 

stimulation elicits a rapid inside-out mechanism of integrin activation that supports a quick 

cell arrest that might be followed by additional mechanisms to stabilize adhesion (18). Under-

flow adhesion assays were conducted for control (CT) and Fam65b knocked-down (KD) T 

lymphocytes visualised in microfluidic channels coated with CCL19, E-selectin and ICAM-1. 

The behavior of CT and KD T cells is quantified in Fig. 2A. KD T cells have a lower 

tendency to exhibit rolling (Fig. 2A, left) and reciprocally show an increased propensity to 

adhere briefly (Fig. 2A, middle) or more stably (Fig. 2A, right). We next aimed at evaluating 

the adhesive role of Fam65b in the complexity of an in vivo situation under physiological 

shear stress forces. We used a validated xenobiotic setting that consists in imaging the 

microcirculation of human T cells in the Peyer’s patches HEVs of anesthetized mice by 

intravital microscopy (11). In these conditions, Fam65b depletion increases the percentage of 
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stably arrested T lymphocytes (Fig. 2B). Therefore, Fam65b negatively regulates T 

lymphocyte adhesion, both in vitro and in vivo. 

 We then analysed the capacity of Fam65b KD cells to polarize morphologically upon 

CCL19 stimulation as described (12). Interestingly, even without any chemokine stimulation, 

Fam65b KD cells tend to spontaneously polarize slightly more than control cells (Fig. 2C). 

After CCL19 stimulation, twice as many KD cells progressed toward the fully polarized stage 

compared to control cells (Fig. 2C). 

As polarity establishment is considered to be a prerequisite for optimal migration (19, 

20), we next aimed at testing a role for Fam65b in T cell migration. We first observed that in 

absence of chemokine stimulation, KD cells are more prone to migrate spontaneously (Fig. 

2D). This phenomenon was more amplified at sub-optimal CCL19 concentration, as the sole 

Fam65b depletion was able to turn immobile cells into lymphocytes efficiently migrating 4 

times above the baseline level (Fig. 2D, middle), most likely due to the higher fraction of 

polarized cells. 

 Altogether, these results show that Fam65b negatively regulates the threshold for T 

cell adhesion, polarisation and migration. 

 

Fam65b is a new partner of RhoA 

In our initial attempt to delineate the signaling pathways regulated by Fam65b, several 

independent observations pointed toward the RhoA GTPase. (i) A remarkable aspect is that 

the T cell functions reported above, in which Fam65b has an inhibitory role, have been 

reported to depend on RhoA activity, whereas actin polymerization in primary T lymphocytes 

is controlled neither by RhoA nor by Fam65b (Supplemental Fig. 3B) (21-25). (ii) An in 

silico approach using Panther classification system for phylogenetically related proteins 

identified Fam65b as a molecule related to the RhoA partner PKN (26, 27) (PTHR15829). 
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(iii) A yeast two-hybrid screen set up for identifying Fam65b partners identified the small 

GTPase RhoA as a possible candidate for Fam65b binding. 

In order to confirm this interaction, we realized a series of pull-down assays. As shown 

in figure 3A and B, both Fam65b isoforms strongly interact with RhoA in an inactive GDP-

bound form as well as an active GTP-bound form. Titering down the amount of RhoA-GDP 

or RhoA-GTP in this assay still maintained similar binding to Fam65b (Fig. 3C), irrespective 

of the type of nucleotide loaded. Association of Fam65b with wild-type RhoA or the 

constitutively active mutant RhoAL63 was also detected purely in vitro with recombinant 

proteins, demonstrating a direct association between Fam65b and RhoA (Fig. 3D).  

We next attempted to identify the Fam65b region responsible for RhoA binding. A 

series of truncated Fam65b mutants was tested in a pull-down assay. N-terminal deletion of 

the first 54 amino acids maintained the ability of this mutant to bind RhoA (Fig. 3E). 

However, removal from amino acid 113 and beyond completely abrogated RhoA interaction. 

Conversely, deletion of the last 101 amino acids did not affect binding to RhoA. We conclude 

that Fam65b binds RhoA through the 54-113 region of Fam65b. 

In addition, this interaction between RhoA and endogenous Fam65b in the lysates of 

primary human T cells was detected (Fig. 3F). Importantly, whereas a strong association was 

observed in un-stimulated T lymphocytes, it was transiently decreased upon CCL19 

stimulation. This result indicates that CCL19 signaling frees RhoA from Fam65b binding. 

 

Fam65b inhibition of migration depends on RhoA binding 

We next aimed at determining whether the Fam65b-RhoA interaction could account for the 

effect of Fam65b on T cell migration. 

We first checked whether RhoA controls T cell migration as described for many other 

cell types (5). This was verified in our system for T cell migration elicited by CCL19 
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signaling using a dominant negative mutant of RhoA. The inhibition of RhoA activity elicited 

a strong inhibition of T cell migration (Fig. 4A). Overexpression of full-length Fam65b also 

inhibited T cell migration whereas the Δ113 mutant, that does not bind RhoA, did not (Fig. 

4B). This result confirms the inhibitory effect of Fam65b on chemokine-induced migration, 

and unveils the requirement for the RhoA binding region of the protein for this inhibition. 

 

Fam65b inhibits RhoA activity 

The functional effects of Fam65b on migration could thus arise from an inhibition of the 

activity of its partner RhoA. To further test this hypothesis, we directly measured the content 

of active GTP-bound RhoA in Fam65b-KD or control cells. The results show that resting KD 

cells had a higher content in RhoA-GTP that did not increase substantially after chemokine 

stimulation contrary to control T cells (Fig. 5A). Thus, Fam65b acts as a factor that tonically 

inhibits the RhoA pathway by decreasing the T cell RhoA-GTP content. 

 In order to delineate the molecular mechanism by which Fam65b inhibits RhoA 

activity, we also performed an in vitro nucleotide exchange assay to measure the kinetics of 

RhoA GTP loading by the Guanine nucleotide Exchange Factor (GEF) domain of the 

RhoGEF Dbs in the presence of Fam65b. In a solution containing fluorescent GTP, we could 

observe a slow and passive loading of GTP on RhoA that was largely independent of the 

presence of Fam65b (Fig. 5B, left). Addition of recombinant Dbs accelerated GTP loading as 

expected. However, the presence of Fam65b slowed down the exchange rate of Dbs on RhoA, 

as shown by a 5-times reduction in the kobs value (Fig. 5B, right). 

 Therefore, we conclude that Fam65b down-modulates the exchange reaction that 

GEFs perform on RhoA and consequently dampens levels of active RhoA in T cells. 
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Discussion 

 

Here, we report that the transcription factor FOXO1 does not only regulate cell growth and 

the expression of homing receptors as previously demonstrated (3), but also controls an 

important signaling pathway involved in T cell migration. Indeed, we have found that 

Fam65b, a phylogenetically well-conserved protein, is induced by FOXO1 and represses 

RhoA activity providing a new and unexpected bridge between the FOXO1 and RhoA 

pathways in order to modulate T cell motility.  

 It is puzzling to note that FOXO1 seems to have opposite effects on motility as it 

induces expression of CD62L and CCR7 that favor homing and expression of Fam65b that 

negatively regulates migration. It is not clear at the moment whether this paradox constitutes 

for FOXO1 a way of finely regulating motility. Alternatively, our in vivo data demonstrate a 

negative role for Fam65b in T cell adhesion to HEVs. This could allow FOXO1 to indirectly 

promote homing again by avoiding T cells to exhibit too strong adhesive properties that 

would maintain them otherwise stuck onto blood vessels. The use of a mouse model deficient 

for Fam65b should allow us to test this possibility.  

We show that Fam65b markedly affects adhesion, polarization and migration upon 

chemokine exposure although it does so without exhibiting obvious changes in its subcellular 

localization (Supplemental Fig. 4A). This is in agreement with the fact that Fam65b can 

interact with RhoA independently of the type of nucleotide it bears and that the total pool of 

RhoA is distributed on both sides of a polarised T cell (Supplemental Fig. 4B) (10). We report 

here that Fam65b exerts a tonic inhibition on RhoA activity. Together with other necessary 

signaling pathways triggered upon chemokine stimulation, the depletion in Fam65b is thus 

likely to account for the advantage exhibited by the KD cells to polarize and migrate. 
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Interestingly, we also show that Fam65b-RhoA interaction decreases upon CCL19 

stimulation, suggesting that the loss of Fam65b control on RhoA activity is likely to allow for 

RhoA activation in normal conditions.   

 Fam65b is an unexpected regulator of RhoA. Indeed, it does not contain any known 

consensus domain found in typical RhoA interactants such as GAP (GTPase Activating 

Protein) and GEF proteins. It does not present any sequence similarity with GDI (Guanine 

nucleotide Dissociation Inhibitors) proteins either. In addition, as effectors can discriminate 

between the GDP- and GTP-bound forms of Rho GTPases, Fam65b does not belong to this 

class of Rho partners. Interestingly, previous papers have reported possible new mechanisms 

for RhoA regulation. The unrelated F11L (28) and Memo (29) proteins that do not contain 

any canonical domain of interaction with RhoA were indeed described as RhoA partners and 

regulators. Although the three proteins do not share any obvious sequence identity, these 

results indicate that RhoA activity can be controlled by thus far unrecognized mechanisms. 

We show here that Fam65b inhibits the exchange reaction performed by GEFs on RhoA. It 

would be interesting to determine whether these three non canonical RhoA partners, i.e. F11L, 

Memo and Fam65b, share a similar regulatory mechanism on RhoA. 

Fam65b has previously been shown to be up-regulated during placenta and muscle cell 

differentiation and to induce membrane protrusions necessary for cell-cell fusion (7, 30, 31). 

In fact, it is the 54-113 portion of the protein that is required for this morphological effect in 

myoblasts (7). Interestingly, we show that this particularly well conserved region related to 

PKN and predicted to display a coiled-coil structure is necessary to bind RhoA, suggesting 

that the effect of Fam65b on myoblast fusion may depend on its ability to interact with RhoA 

and to inhibit its activity. Consistent with this model, others have shown that a decrease in 

RhoA-GTP content was indispensable to allow myoblast fusion (32). Therefore, we consider 

most likely that Fam65b behaves as an inducible repressor of RhoA activity to allow cell-cell 
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fusion during muscle or placenta formation is most likely. 

In conclusion, we have identified here a new RhoA down-modulator whose expression 

is tightly controlled by FOXO1. Although our data have been obtained in T lymphocytes, the 

mechanisms uncovered in these cells may be of much wider significance in other cell types 

for contributing to other cell-specific functions. We have shown that Fam65b acts as a brake 

for T cell migration, and therefore represents a new target by which FOXO1 can regulate 

motile processes. 
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FIGURE LEGENDS 

 

 

FIGURE 1. Fam65b expression is controlled by FOXO1. (A) Jurkat cells transduced with 

GFP, FOXO1(3A)-GFP or FOXO1(3A, H215R)-GFP were analyzed 48 hrs later for fam65b 

isoform 1 or 2 transcript levels by qRT-PCR. Data are from three independent experiments. 

(B) Jurkat cells were co-transfected with a construct encoding FOXO1(3A)-GFP together 

with a luciferase reporter plasmid containing the putative FOXO1 enhancer in fam65b 

isoform 1 or 2 promoters and an internal Renilla luciferase reporter construct driven by the 

CMV promoter. 24 h post transfection, cells were lysed and Firefly and Renilla luciferase 

activities were measured. Data are shown as means of two independent experiments 

conducted in triplicate. (C) Chromatin proteins in Jurkat cells infected with GFP (control) or 

FOXO1(3A)-GFP were cross-linked to DNA and immunoprecipitated using anti-GFP or non 

immune rabbit IgG control. Eluted DNAs were diluted for PCR and amplified DNA 

fragments using specific primers (supplemental Fig. 2) were resolved on gel. (D) Flow 

cytometry analysis of Fam65b expression in Jurkat cells transfected with plasmids encoding 

GFP, FOXO1-GFP, FOXO1(3A)-GFP or FOXO1(3A,H215R)-GFP. Left: examples of dot 

plots showing the GFP expression levels as a function of Fam65b expression. Top right: 

Overlays of Fam65b expression gated in cells expressing GFP (red line), FOXO1-GFP 

(orange line), active FOXO1(3A)-GFP (green line) and active FOXO1(3A,H215R)-GFP (blue 

line). Bottom right: Mean fluorescence intensities of Fam65b expression in the GFP+ gate of 

the different transfectants (means +/- SE from six independent experiments). (E) Subcellular 

localization of the different FOXO1 mutants in Jurkat cells. The following stainings are 

shown: GFP (green), Hoechst (blue) and Fam65b (red). Examples of representative cells are 

shown.  
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FIGURE 2. Fam65b inhibits T cell adhesion, polarization and migration upon chemokine 

stimulation. (A) Under-flow adhesion to ICAM-1 was tested in PBT transfected with control 

(CT) or Fam65b (KD) RNAi. The % of cells exhibiting rolling (left), or arrest for at least 1 

sec (middle) or 10 sec (right) is shown. Means +/- SE from seven independent experiments. 

(B) The % of control (CT) or Fam65b-depleted (KD) PBT that arrested at least 10 sec on 

Peyer’s patches HEVs in vivo were quantified (means +/- SE from ten microscopic fields 

obtained in four mice). (C) PBT transfected with control (CT, left) or Fam65b (KD, right) 

RNAi were stimulated or not with 100 ng/ml CCL19 for 8 mins, fixed and stained for F-actin. 

Each cell was scored into one of the four categories previously described (12): weak 

homogenous actin (black), mislocalized actin (white), polarized actin (light grey) and fully 

polarized with a uropod (dark grey). For each category, one example of the F-actin staining 

depicted with an inverted black and white scale is shown as an illustration. One example out 

of three experiments is shown. (D) PBT transfected with CT or Fam65b (KD) RNAi were 

tested for migration to different concentrations of CCL19 in a 3-hour transwell assay. One 

representative experiment out of three is presented. 

 

FIGURE 3. Fam65b interacts with RhoA. Lysates from 293T cells transfected with 

Fam65b(1)-GFP (A) or Fam65b(2)-GFP (B) were subjected to a pull-down assay using beads 

bearing GST alone or 8 µg GST-RhoA loaded with GDP or GTPγS. wcl: whole cell lysate. 

(C) The lysate from 293T cells transfected with Fam65b(2)-GFP was incubated in a pull-

down assay with 9, 3 or 1 μg GST-RhoA beads loaded with GDP or GTPγS. The RhoA-

Fam65b association was tested by Western blot in the different conditions. (D) Human 

recombinant Fam65b(2) tagged with GST was added to beads loaded with no protein, His-

RhoA (28 kD) or His-RhoAL63 (22 kD). Direct protein-protein interaction was analysed by 
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pull-down assay. Note that both recombinant RhoA proteins have slightly different molecular 

weight due to a small irrelevant amino acid stretch present between the His tag and the RhoA 

sequence of the wild type protein. (E) Left panel: The deletion mutants of Fam65b(2) are 

schematically represented. Right panel: Lysates from 293T cells transfected with Fam65b(2)-

V5 FL (Full Length) or different deletion mutants in N- or C-terminal were submitted to a 

pull-down assay using GST-RhoA beads. For each transfectant, the first lane shows the wcl 

fraction and the second lane shows the amount of Fam65b(2) FL or mutant bound to RhoA. 

Each panel shows a representative experiment of at least three independent assays. (F) 

Lysates from PBT stimulated for different times with 200 ng/ml CCL19 were submitted to a 

pull-down assay using GST or GST-RhoA beads (top two panels). Fam65b in the whole cell 

lysate fraction is shown as a loading control (bottom panel). One experiment representative of 

three independent ones is shown. 

 

FIGURE 4. The role of Fam65b in T cell migration depends on RhoA binding. (A) PBT 

transfected with GFP or GFP-RhoAN19 were tested as described previously in a transwell 

assay. The percentages of migratory T cells were normalized to the GFP-transfected 

population in each experiment set to 100. Data are from two independent experiments 

(*p=0.039). (B) PBT transfected with empty vector (EV), full-length (FL) Fam65b(2) or Nt-

Fam65b(2)Δ113 (Δ113) were similarly tested in a migration assay. Data obtained for each 

condition was normalised to the migration index obtained in EV-transfected T cells set to 100. 

Data are from eight donors (*p=0.02; **p=0.005). 

 

FIGURE 5. Fam65b inhibits RhoA activity. (A) PBT transfected with CT or Fam65b (KD) 

RNAi were stimulated or not with 200 ng/ml CCL19 for 30 sec. The active RhoA-GTP 

content was measured for each condition in triplicate by the G-LISATM method. Data from 
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three independent experiments are shown (n.s.: not significant; **p=0.0317; ***p=0.0075). 

(B) Recombinant RhoA and Fam65b were placed alone or in combination in wells of a 384-

well plate. Recombinant Dbs was then added and the plate was put in a FlexStation to read the 

evolution of RhoA GTP loading by fluorescence (left). Means +/- SE of kobs values for 

RhoA+Dbs (n=8) or RhoA+Dbs+Fam65b (n=6) (right) (*p=0.014). 
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