44 research outputs found

    A new integrative assessment indicator for damage caused by major pests and diseases in the vineyard

    Get PDF
    An original and integrative evaluation indicator has been developed to quantify the cumulated damage from major pests and diseases affecting grape bunches: downy mildew, powdery mildew, gray mould and tortricid moths. It made it possible to estimate the associated crop losses and to relate them to the plant protection strategy in different modes of production (organic farming, in-transition, conventional). Thus, overall plant losses were higher in 2012 than in 2011. The in-transition growers’ strategy, with reduced copper doses but increased numbers of sprays, led to a 20% increase in average severity on bunches (essentially due to Downy mildew). The more pragmatic approach of experienced organic growers and conventional ones (higher doses and fewer sprays) reduced the yield losses. The proposed indicator is used for two purposes, i) evaluating the quantitative losses due to pest attacks and ii) differentiating them from other non-pest ones. A more detailed analysis including the impact on performance will be achieved and published soon

    Functional and biophysical analyses of the class XIV Toxoplasma gondii Myosin D

    Get PDF
    Summary: The obligate intracellular parasite Toxoplasma gondii uses gliding motility to migrate across the biological barriers of the host and to invade cells. This unique form of locomotion requires an intact actin cytoskeleton and involves at least one motor protein (TgMyoA) that belongs to the class XIV of the myosin superfamily. TgMyoA is anchored in the inner membrane complex and is essential for the gliding motion, host cell invasion and egress of T. gondii tachyzoites. TgMyoD is the smallest T. gondii myosin and is structurally very closely related to TgMyoA. We show here that TgMyoD exhibits similar transient kinetic properties as the fast single-headed TgMyoA. To determine if TgMyoD also contributes to parasite gliding motility, the TgMyoD gene was disrupted by double homologous recombination. In contrast to TgMyoA, TgMyoD gene is dispensable for tachyzoite propagation and motility. Parasites lacking TgMyoD glide normally and their virulence is not compromised in mice. The fact that TgMyoD is predominantly expressed in bradyzoites explains the absence of a phenotype observed with myodko in tachyzoites and does not exclude a role of this motor in gliding that would be restricted to the cyst forming but nevertheless motile stage of the parasit

    Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii

    Get PDF
    Toxoplasma gondii contains an expanded number of calmodulin (CaM)-like proteins whose functions are poorly understood. Using a combination of CRISPR/Cas9-mediated gene editing and a plant-like auxin-induced degron (AID) system, we examined the roles of three apically localized CaMs. CaM1 and CaM2 were individually dispensable, but loss of both resulted in a synthetic lethal phenotype. CaM3 was refractory to deletion, suggesting it is essential. Consistent with this prediction auxin-induced degradation of CaM3 blocked growth. Phenotypic analysis revealed that all three CaMs contribute to parasite motility, invasion, and egress from host cells, and that they act downstream of microneme and rhoptry secretion. Super-resolution microscopy localized all three CaMs to the conoid where they overlap with myosin H (MyoH), a motor protein that is required for invasion. Biotinylation using BirA fusions with the CaMs labeled a number of apical proteins including MyoH and its light chain MLC7, suggesting they may interact. Consistent with this hypothesis, disruption of MyoH led to degradation of CaM3, or redistribution of CaM1 and CaM2. Collectively, our findings suggest these CaMs may interact with MyoH to control motility and cell invasion

    New Insights into Blastocystis spp.: A Potential Link with Irritable Bowel Syndrome

    Get PDF
    International audienceBlastocystis spp. belong to the phylum Stramenopila, a complex and heterogeneous evolutionary assemblage of heterotrophic and photosynthetic protozoa [1]. Interestingly, this is the only stramenopile living in the lower digestive tract of humans, and it also lives in other mammals, birds, reptiles, amphibians, and insects [1]. Even though isolates were reported to be morphologically indistinguishable, an extensive genetic variation among isolates from both humans and animals has been observed. Thirteen subtypes (ST1-ST13), with the first nine being found in humans, have been identified based on genes coding for the small-subunit ribosomal RNA [2]. Preferential repartition of STs exists among animals that appear to constitute the main reservoir for environmental dissemination and human contamination

    Subcellular Location, Phosphorylation and Assembly into the Motor Complex of GAP45 during Plasmodium falciparum Schizont Development

    Get PDF
    An actomyosin motor complex assembled below the parasite's plasma membrane drives erythrocyte invasion by Plasmodium falciparum merozoites. The complex is comprised of several proteins including myosin (MyoA), myosin tail domain interacting protein (MTIP) and glideosome associated proteins (GAP) 45 and 50, and is anchored on the inner membrane complex (IMC), which underlies the plasmalemma. A ternary complex of MyoA, MTIP and GAP45 is formed that then associates with GAP50. We show that full length GAP45 labelled internally with GFP is assembled into the motor complex and transported to the developing IMC in early schizogony, where it accumulates during intracellular development until merozoite release. We show that GAP45 is phosphorylated by calcium dependent protein kinase 1 (CDPK1), and identify the modified serine residues. Replacing these serine residues with alanine or aspartate has no apparent effect on GAP45 assembly into the motor protein complex or its subcellular location in the parasite. The early assembly of the motor complex suggests that it has functions in addition to its role in erythrocyte invasion

    Exposure to Sublethal Doses of Fipronil and Thiacloprid Highly Increases Mortality of Honeybees Previously Infected by Nosema ceranae

    Get PDF
    International audienceBACKGROUND: The honeybee, Apis mellifera, is undergoing a worldwide decline whose origin is still in debate. Studies performed for twenty years suggest that this decline may involve both infectious diseases and exposure to pesticides. Joint action of pathogens and chemicals are known to threaten several organisms but the combined effects of these stressors were poorly investigated in honeybees. Our study was designed to explore the effect of Nosema ceranae infection on honeybee sensitivity to sublethal doses of the insecticides fipronil and thiacloprid. METHODOLOGY/FINDING: Five days after their emergence, honeybees were divided in 6 experimental groups: (i) uninfected controls, (ii) infected with N. ceranae, (iii) uninfected and exposed to fipronil, (iv) uninfected and exposed to thiacloprid, (v) infected with N. ceranae and exposed 10 days post-infection (p.i.) to fipronil, and (vi) infected with N. ceranae and exposed 10 days p.i. to thiacloprid. Honeybee mortality and insecticide consumption were analyzed daily and the intestinal spore content was evaluated 20 days after infection. A significant increase in honeybee mortality was observed when N. ceranae-infected honeybees were exposed to sublethal doses of insecticides. Surprisingly, exposures to fipronil and thiacloprid had opposite effects on microsporidian spore production. Analysis of the honeybee detoxification system 10 days p.i. showed that N. ceranae infection induced an increase in glutathione-S-transferase activity in midgut and fat body but not in 7-ethoxycoumarin-O-deethylase activity. CONCLUSIONS/SIGNIFICANCE: After exposure to sublethal doses of fipronil or thiacloprid a higher mortality was observed in N. ceranae-infected honeybees than in uninfected ones. The synergistic effect of N. ceranae and insecticide on honeybee mortality, however, did not appear strongly linked to a decrease of the insect detoxification system. These data support the hypothesis that the combination of the increasing prevalence of N. ceranae with high pesticide content in beehives may contribute to colony depopulation

    Control of grape berry moth larvae using parasitoids: should it be developed?

    No full text
    8 pagesInternational audienceBesides mating disruption techniques and progress in monitoring techniques (e.g. theuse of food traps against females), biological control may reveal itself very efficient at controllinggrape moth populations. Parasitoids active to control grape moths are known for long invineyards; few of them were already described in the middle of the 19th century in Frenchvineyards and their efficiency was already recognized especially against the diapausing and thefirst spring generations of the moths. Rather numerous attempts to release egg parasitoids havebeen done in different European countries using different species of trichogrammas. The resultsobtained varied a lot and could not yet clearly promote the use of this technique in vineyards. Webelieve that a biological control based on larval parasitoids could efficiently be developed as avaluable alternative to chemical control. In the present paper, we focus on larval parasitoidsamong which ichneumonids and chalcidoids (Hymenoptera) dominate, and present resultsobtained in different French vineyards (Bordeaux vineyard, Perpignan and Montpellier area,CĂ´tes du RhĂ´ne and Alsace). We discuss factors that may favour or reduce their efficiency asbiocontrol agents

    Invasive Drosophila suzukii

    No full text
    corecore