53 research outputs found

    Improving pulse crops as a source of protein, starch and micronutrients

    Get PDF
    Pulse crops have been known for a long time to have beneficial nutritional profiles for human diets but have been neglected in terms of cultivation, consumption and scientific research in many parts of the world. Broad dietary shifts will be required if anthropogenic climate change is to be mitigated in the future, and pulse crops should be an important component of this change by providing an environmentally sustainable source of protein, resistant starch and micronutrients. Further enhancement of the nutritional composition of pulse crops could benefit human health, helping to alleviate micronutrient deficiencies and reduce risk of chronic diseases such as type 2 diabetes. This paper reviews current knowledge regarding the nutritional content of pea (Pisum sativum L.) and faba bean (Vicia faba L.), two major UK pulse crops, and discusses the potential for their genetic improvement

    Cell-free H-cluster Synthesis and [FeFe] Hydrogenase Activation: All Five CO and CN− Ligands Derive from Tyrosine

    Get PDF
    [FeFe] hydrogenases are promising catalysts for producing hydrogen as a sustainable fuel and chemical feedstock, and they also serve as paradigms for biomimetic hydrogen-evolving compounds. Hydrogen formation is catalyzed by the H-cluster, a unique iron-based cofactor requiring three carbon monoxide (CO) and two cyanide (CN−) ligands as well as a dithiolate bridge. Three accessory proteins (HydE, HydF, and HydG) are presumably responsible for assembling and installing the H-cluster, yet their precise roles and the biosynthetic pathway have yet to be fully defined. In this report, we describe effective cell-free methods for investigating H-cluster synthesis and [FeFe] hydrogenase activation. Combining isotopic labeling with FTIR spectroscopy, we conclusively show that each of the CO and CN− ligands derive respectively from the carboxylate and amino substituents of tyrosine. Such in vitro systems with reconstituted pathways comprise a versatile approach for studying biosynthetic mechanisms, and this work marks a significant step towards an understanding of both the protein-protein interactions and complex reactions required for H-cluster assembly and hydrogenase maturation

    Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering

    Get PDF
    The need to develop and improve sustainable energy resources is of eminent importance due to the finite nature of our fossil fuels. This review paper deals with a third generation renewable energy resource which does not compete with our food resources, cyanobacteria. We discuss the current state of the art in developing different types of bioenergy (ethanol, biodiesel, hydrogen, etc.) from cyanobacteria. The major important biochemical pathways in cyanobacteria are highlighted, and the possibility to influence these pathways to improve the production of specific types of energy forms the major part of this review

    Cyanobacterial nitrogenases: phylogenetic diversity, regulation and functional predictions

    Get PDF
    Abstract Cyanobacteria is a remarkable group of prokaryotic photosynthetic microorganisms, with several genera capable of fixing atmospheric nitrogen (N2) and presenting a wide range of morphologies. Although the nitrogenase complex is not present in all cyanobacterial taxa, it is spread across several cyanobacterial strains. The nitrogenase complex has also a high theoretical potential for biofuel production, since H2 is a by-product produced during N2 fixation. In this review we discuss the significance of a relatively wide variety of cell morphologies and metabolic strategies that allow spatial and temporal separation of N2 fixation from photosynthesis in cyanobacteria. Phylogenetic reconstructions based on 16S rRNA and nifD gene sequences shed light on the evolutionary history of the two genes. Our results demonstrated that (i) sequences of genes involved in nitrogen fixation (nifD) from several morphologically distinct strains of cyanobacteria are grouped in similarity with their morphology classification and phylogeny, and (ii) nifD genes from heterocytous strains share a common ancestor. By using this data we also discuss the evolutionary importance of processes such as horizontal gene transfer and genetic duplication for nitrogenase evolution and diversification. Finally, we discuss the importance of H2 synthesis in cyanobacteria, as well as strategies and challenges to improve cyanobacterial H2 production

    New Strategy for Identification of Novel cry-Type Genes from Bacillus thuringiensis Strains

    Get PDF
    We designed five degenerate primers for detection of novel cry genes from Bacillus thuringiensis strains. An efficient strategy was developed based on a two-step PCR approach with these primers in five pair combinations. In the first step, only one of the primer pairs is used in the PCR, which allows amplification of DNA fragments encoding protein regions that include consensus domains of representative proteins belonging to different Cry groups. A second PCR is performed by using the first-step amplification products as DNA templates and the set of five primer combinations. Cloning and sequencing of the last-step amplicons allow both the identification of known cry genes encoding Cry proteins covering a wide phylogenetic distance and the detection and characterization of cry-related sequences from novel B. thuringiensis isolates

    Auxin-dependent alleviation of oxidative stress and growth promotion of <i>Scenedesmus obliquus</i> C1S by <i>Azospirillum brasilense</i>

    Full text link
    AbstractThere is currently an increasing interest in the use of microalgae for wastewater treatment and the use of its biomass as a feedstock for biofuels. Both of these applications are often performed more efficiently by microalgal-bacteria consortia. However, the mechanisms that account for the stability and robustness of this kind of interactions are poorly understood. In this study, we confirmed the growth promotion activity of the plant growth-promoting bacterium Azospirillum brasilense Sp245 on the microalgae Scenedesmus obliquus C1S. We show that this activity is critically dependent on bacterial indole-3 acetic acid (IAA) production, which results in a decrease in algal reactive oxygen species (ROS) levels, higher cell densities and ameliorates algal cells bleaching after nitrogen deprivation. We also show a close inter-species interaction between both partners and an active expression of the bacterial ipdC gene involved in production of IAA when co-cultivated.This study extends the current knowledge of the mechanisms underlying bacteria-microalgae consortia to improve their technological applications and to better understand ecological relationships in the environment.</jats:p
    corecore