555 research outputs found

    Introduction to Engineering: Embry-Riddle Aeronautical University EGR101 9th Edition

    Get PDF
    “Introduction to Engineering” is about making our students at Embry-Riddle Aeronautical University successful in academia and responsible engineering professionals. The collective knowledge of several authors representing all departments within the College of Engineering went into its making. Topics were chosen especially for students in the engineering programs at ERAU to specifically address their needs and tailored to assure their success.https://commons.erau.edu/oer-textbook/1003/thumbnail.jp

    Ordered and periodic chaos of the bounded one dimensinal multibarrier potential

    Full text link
    Numerical analysis indicates that there exists an unexpected new ordered chaos for the bounded one-dimensional multibarrier potential. For certain values of the number of barriers, repeated identical forms (periods) of the wavepackets result upon passing through the multibarrier potential.Comment: 16 pages, 9 figures, 1 Table. Some former text removed and other introduce

    Fluctuations of the correlation dimension at metal-insulator transitions

    Get PDF
    We investigate numerically the inverse participation ratio, P2P_2, of the 3D Anderson model and of the power-law random banded matrix (PRBM) model at criticality. We found that the variance of lnP2\ln P_2 scales with system size LL as σ2(L)=σ2()ALD2/2d\sigma^2(L)=\sigma^2(\infty)-A L^{-D_2/2d}, being D2D_2 the correlation dimension and dd the system dimension. Therefore the concept of a correlation dimension is well defined in the two models considered. The 3D Anderson transition and the PRBM transition for b=0.3b=0.3 (see the text for the definition of bb) are fairly similar with respect to all critical magnitudes studied.Comment: RevTex, 5 pages, 4 eps figures, to be published in Phys. Rev. Let

    High Speed Phase-Resolved 2-d UBV Photometry of the Crab pulsar

    Get PDF
    We report a phase-resolved photometric and morphological analysis of UBV data of the Crab pulsar obtained with the 2-d TRIFFID high speed optical photometer mounted on the Russian 6m telescope. By being able to accurately isolate the pulsar from the nebular background at an unprecedented temporal resolution (1 \mu s), the various light curve components were accurately fluxed via phase-resolved photometry. Within the UBVUBV range, our datasets are consistent with the existing trends reported elsewhere in the literature. In terms of flux and phase duration, both the peak Full Width Half Maxima and Half Width Half Maxima decrease as a function of photon energy. This is similarly the case for the flux associated with the bridge of emission. Power-law fits to the various light curve components are as follows; \alpha = 0.07 \pm 0.19 (peak 1), \alpha = -0.06 \pm 0.19 (peak 2) and \alpha = -0.44 \pm 0.19 (bridge) - the uncertainty here being dominated by the integrated CCD photometry used to independently reference the TRIFFID data. Temporally, the main peaks are coincident to \le 10 \mu s although an accurate phase lag with respect to the radio main peak is compromised by radio timing uncertainties. The plateau on the Crab's main peak was definitively determined to be \leq 55 \mu s in extent and may decrease as a function of photon energy. There is no evidence for non-stochastic activity over the light curves or within various phase regions, nor is there evidence of anything akin to the giant pulses noted in the radio. Finally, there is no evidence to support the existence of a reported 60 second modulation suggested to be as a consequence of free precession.Comment: 13 pages, 12 figures, accepted for publication in Astronomy & Astrophysic

    Defining plant resistance against Phytophthora Cinnamomi and application of resistance to revegetation

    Full text link
    Phytophthora cinnamomi is a soil borne plant pathogen that causes devastating disease in many Australian ecosystems and threatens the survival of native flora. Compared with the number of plant species that are susceptible to P. cinnamomi, only a few species are known to be resistant and control of this pathogen by chemicals is difficult and undesirable in natural systems. The major aim of our research is therefore to characterise natural resistance and determine which signalling pathways and defence responses are involved. Our examination of resistance is being approached at several levels, one of which is through the use of the model plant, Arabidopsis. Previously, Arabidopsis had been shown to display ecotypic variation in responses to P. cinnamomi and we are exploring this further in conjunction with the analysis of a bank of Arabidopsis defence pathway mutants for their responses to the pathogen. These experiments will provide a fundamental basis for further analysis of the defence responses of native plants. Native species (susceptible and resistant) are being assessed for their responses to P. cinnamomi at morphological, biochemical and molecular levels. This research also involves field-based studies of plants under challenge at various sites throughout Victoria, Australia. The focus of this field-based research is to assess the responses of individual species to P. cinnamomi in the natural environment with the goal of identifying individuals within susceptible species that display \u27resistance\u27. Understanding how plants are able to resist this pathogen will enable strategies to be developed to enhance species survival and to restore structure and biodiversity to the ecosystems under threat.<br /

    Exact-Diagonalization Studies of Inelastic Light Scattering in Self-Assembled Quantum Dots

    Full text link
    We report exact diagonalization studies of inelastic light scattering in few-electron quantum dots under the strong confinement regime characteristic of self-assembled dots. We apply the orthodox (second-order) theory for scattering due to electronic excitations, leaving for the future the consideration of higher-order effects in the formalism (phonons, for example), which seem relevant in the theoretical description of available experiments. Our numerical results stress the dominance of monopole peaks in Raman spectra and the breakdown of selection rules in open-shell dots. The dependence of these spectra on the number of electrons in the dot and the incident photon energy is explicitly shown. Qualitative comparisons are made with recent experimental results.Comment: 11 pages, 11 figure

    Electronic structure of and Quantum size effect in III-V and II-VI semiconducting nanocrystals using a realistic tight binding approach

    Get PDF
    We analyze the electronic structure of group III-V semiconductors obtained within full potential linearized augmented plane wave (FP-LAPW) method and arrive at a realistic and minimal tight-binding model, parameterized to provide an accurate description of both valence and conduction bands. It is shown that cation sp3 - anion sp3d5 basis along with the next nearest neighbor model for hopping interactions is sufficient to describe the electronic structure of these systems over a wide energy range, obviating the use of any fictitious s* orbital, employed previously. Similar analyses were also performed for the II-VI semiconductors, using the more accurate FP-LAPW method compared to previous approaches, in order to enhance reliability of the parameter values. Using these parameters, we calculate the electronic structure of III-V and II-VI nanocrystals in real space with sizes ranging upto about 7 nm in diameter, establishing a quantitatively accurate description of the band-gap variation with sizes for the various nanocrystals by comparing with available experimental results from the literature.Comment: 28 pages, 8 figures, Accepted for publication in Phys. Rev.

    Larval therapy for leg ulcers (VenUS II) : randomised controlled trial

    Get PDF
    Objective To compare the clinical effectiveness of larval therapy with a standard debridement technique (hydrogel) for sloughy or necrotic leg ulcers. Design Pragmatic, three armed randomised controlled trial. Setting Community nurse led services, hospital wards, and hospital outpatient leg ulcer clinics in urban and rural settings, United Kingdom. Participants 267 patients with at least one venous or mixed venous and arterial ulcer with at least 25% coverage of slough or necrotic tissue, and an ankle brachial pressure index of 0.6 or more. Interventions Loose larvae, bagged larvae, and hydrogel. Main outcome measures The primary outcome was time to healing of the largest eligible ulcer. Secondary outcomes were time to debridement, health related quality of life (SF-12), bacterial load, presence of meticillin resistant Staphylococcus aureus, adverse events, and ulcer related pain (visual analogue scale, from 0 mm for no pain to 150 mm for worst pain imaginable). Results Time to healing was not significantly different between the loose or bagged larvae group and the hydrogel group (hazard ratio for healing using larvae v hydrogel 1.13, 95% confidence interval 0.76 to 1.68; P=0.54). Larval therapy significantly reduced the time to debridement (2.31, 1.65 to 3.2; P<0.001). Health related quality of life and change in bacterial load over time were not significantly different between the groups. 6.7% of participants had MRSA at baseline. No difference was found between larval therapy and hydrogel in their ability to eradicate MRSA by the end of the debridement phase (75% (9/12) v 50% (3/6); P=0.34), although this comparison was underpowered. Mean ulcer related pain scores were higher in either larvae group compared with hydrogel (mean difference in pain score: loose larvae v hydrogel 46.74 (95% confidence interval 32.44 to 61.04), P<0.001; bagged larvae v hydrogel 38.58 (23.46 to 53.70), P<0.001). Conclusions Larval therapy did not improve the rate of healing of sloughy or necrotic leg ulcers or reduce bacterial load compared with hydrogel but did significantly reduce the time to debridement and increase ulcer pain. Trial registration Current Controlled Trials ISRCTN55114812 and National Research Register N0484123692

    Accurate evaluation of the Green's function of disordered graphenes

    Full text link
    An accurate simulation of Green's function and self-energy function of non-interacting electrons in disordered graphenes are performed. Fundamental physical quantities such as the elastic relaxation time {\tau}e, the phase velocity vp, and the group velocity vg are evaluated. New features around the Dirac point are revealed, showing hints that multi-scattering induced hybridization of Bloch states plays an important role in the vicinity of the Dirac point.Comment: 4 figure

    Energy-level statistics at the metal-insulator transition in anisotropic systems

    Full text link
    We study the three-dimensional Anderson model of localization with anisotropic hopping, i.e. weakly coupled chains and weakly coupled planes. In our extensive numerical study we identify and characterize the metal-insulator transition using energy-level statistics. The values of the critical disorder WcW_c are consistent with results of previous studies, including the transfer-matrix method and multifractal analysis of the wave functions. WcW_c decreases from its isotropic value with a power law as a function of anisotropy. Using high accuracy data for large system sizes we estimate the critical exponent ν=1.45±0.2\nu=1.45\pm0.2. This is in agreement with its value in the isotropic case and in other models of the orthogonal universality class. The critical level statistics which is independent of the system size at the transition changes from its isotropic form towards the Poisson statistics with increasing anisotropy.Comment: 22 pages, including 8 figures, revtex few typos corrected, added journal referenc
    corecore