9 research outputs found

    Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators

    Get PDF
    The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae) and Tidarren haemorrhoidale (Araneae: Theridiidae) and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae) were chosen to evaluate the efficacy of arsenic transfer between aquatic and terrestrial environments. Culex tarsalis larvae were reared in either control water or water containing 1000 µg l(−1) arsenic. Adults that emerged from the control and arsenic treatments were fed to the terrestrial predators, and fourth instar larvae were fed to the aquatic predator reared in control or arsenic contaminated water. Tenodera a. sinensis fed arsenic-treated Cx. tarsalis accumulated 658±130 ng g(−1) of arsenic. There was no significant difference between control and arsenic-fed T. haemorrhoidale (range 142–290 ng g(−1)). Buenoa scimitra accumulated 5120±406 ng g(−1) of arsenic when exposed to arsenic-fed Cx. tarsalis and reared in water containing 1000 µg l(−1) arsenic. There was no significant difference between controls or arsenic-fed B. scimitra that were not exposed to water-borne arsenic, indicating that for this species environmental exposure was more important in accumulation than strictly dietary arsenic. These results indicate that transfer to terrestrial predators may play an important role in arsenic cycling, which would be particularly true during periods of mass emergence of potential insect biovectors. Trophic transfer within the aquatic environment may still occur with secondary predation, or in predators with different feeding strategies

    Environmental Risks of Inorganic Metals and Metalloids: A Continuing, Evolving Scientific Odyssey

    No full text

    Old wine in new bottles: reaction norms in salmonid fishes

    No full text
    Genetic variability in reaction norms reflects differences in the ability of individuals, populations and ultimately species to respond to environmental change. By increasing our understanding of how genotype × environment interactions influence evolution, studies of genetic variation in phenotypic plasticity serve to refine our capacity to predict how populations will respond to natural and anthropogenic environmental variability, including climate change. Given the extraordinary variability in morphology, behaviour and life history in salmonids, one might anticipate the research milieu on reaction norms in these fishes to be empirically rich and intellectually engaging. Here, I undertake a review of genetic variability in continuous and discontinuous (threshold) norms of reaction in salmonid fishes, as determined primarily (but not exclusively) by common-garden experiments. Although in its infancy from a numerical publication perspective, there is taxonomically broad evidence of genetic differentiation in continuous, threshold and bivariate reaction norms among individuals, families and populations (including inter-population hybrids and backcrosses) for traits as divergent as embryonic development, age and size at maturity, and gene expression. There is compelling inferential evidence that plasticity is heritable and that population differences in reaction norms can reflect adaptive responses, by natural selection, to local environments. As a stimulus for future work, a series of 20 research questions are identified that focus on reaction-norm variability, selection, costs and constraints, demographic and conservation consequences, and genetic markers and correlates of phenotypic plasticity
    corecore