614 research outputs found
Foray search: An effective systematic dispersal strategy in fragmented landscapes
In the absence of evidence to the contrary, population models generally assume that the dispersal trajectories of animals are random, but systematic dispersal could be more efficient at detecting new habitat and may therefore constitute a more realistic assumption. Here, we investigate, by means of simulations, the properties of a potentially widespread systematic dispersal strategy termed "foray search." Foray search was more efficient in detecting suitable habitat than was random dispersal in most landscapes and was less subject to energetic constraints. However, it also resulted in considerably shorter net dispersed distances and higher mortality per net dispersed distance than did random dispersal, and it would therefore be likely to lead to lower dispersal rates toward the margins of population networks. Consequently, the use of foray search by dispersers could crucially affect the extinction-colonization balance of metapopulations and the evolution of dispersal rates. We conclude that population models need to take the dispersal trajectories of individuals into account in order to make reliable predictions
Non-random dispersal in the butterfly Maniola jurtina: implications for metapopulation models
The dispersal patterns of animals are important in metapopulation ecology because they affect the dynamics and survival of populations. Theoretical models assume random dispersal but little is known in practice about the dispersal behaviour of individual animals or the strategy by which dispersers locate distant habitat patches. In the present study, we released individual meadow brown butterflies (Maniola jurtina) in a non-habitat and investigated their ability to return to a suitable habitat. The results provided three reasons for supposing that meadow brown butterflies do not seek habitat by means of random flight. First, when released within the range of their normal dispersal distances, the butterflies orientated towards suitable habitat at a higher rate than expected at random. Second, when released at larger distances from their habitat, they used a non-random, systematic, search strategy in which they flew in loops around the release point and returned periodically to it. Third, butterflies returned to a familiar habitat patch rather than a non-familiar one when given a choice. If dispersers actively orientate towards or search systematically for distant habitat, this may be problematic for existing metapopulation models, including models of the evolution of dispersal rates in metapopulations
Ecological and evolutionary processes at expanding range margins
Many animals are regarded as relatively sedentary and specialized in marginal parts of their geographical distributions. They are expected to be slow at colonizing new habitats. Despite this, the cool margins of many species' distributions have expanded rapidly in association with recent climate warming. We examined four insect species that have expanded their geographical ranges in Britain over the past 20 years. Here we report that two butterfly species have increased the variety of habitat types that they can colonize, and that two bush cricket species show increased fractions of longer-winged (dispersive) individuals in recently founded populations. Both ecological and evolutionary processes are probably responsible for these changes. Increased habitat breadth and dispersal tendencies have resulted in about 3- to 15-fold increases in expansion rates, allowing these insects to cross habitat disjunctions that would have represented major or complete barriers to dispersal before the expansions started. The emergence of dispersive phenotypes will increase the speed at which species invade new environments, and probably underlies the responses of many species to both past and future climate change
Copycat dynamics in leaderless animal group navigation
Background: Many animals are known to have improved navigational efficiency when moving together as a social group. One potential mechanism for social group navigation is known as the 'many wrongs principle', where information from many inaccurate compasses is pooled across the group. In order to understand how animal groups may use the many wrongs principle to navigate, it is important to consider how directional information is transferred and shared within the group. Methods: Here we use an individual-based model to explore the information-sharing and copying dynamics of a leaderless animal group navigating towards a target in a virtual environment. We assume that communication and information-sharing is indirect and arises through individuals partially copying the movement direction of their neighbours and weighting this information relative to their individual navigational knowledge. Results: We find that the best group navigation performance occurs when individuals directly copy the direction of movement of a subset of their neighbours while only giving a small (6%) weighting to their individual navigational knowledge. Surprisingly, such a strategy is shown to be highly efficient regardless of the level of individual navigational error. We find there is little relative improvement in navigational efficiency when individuals copy from more than 7 influential neighbours. Conclusions: Our findings suggest that we would expect navigating group-living animals to predominantly copy the movement of others rather than relying on their own navigational knowledge. We discuss our results in the context of individual and group navigation behaviour in animals
Isotopic analysis of faunal material from South Uist, Western Isles, Scotland
This paper reports on the results from stable isotope analysis of faunal bone collagen from a number of Iron Age
and later sites on the island of South Uist, in the Western Isles, Scotland. This preliminary investigation into the isotopic signatures of the fauna is part of a larger project to model the interaction between humans, animals, and the broader environment in the Western Isles. The results demonstrate that the island fauna data fall within the range of expected results for the UK, with the terrestrial herbivorous diets of cattle and sheep confi rmed. The isotopic composition for pigs suggests that some of these animals had an omnivorous diet, whilst a single red deer value might be suggestive of the consumption of marine foods, such as by grazing on seaweed. However, further analysis is needed in order to verify this anomalous isotopic ratio
Challenges in Complex Systems Science
FuturICT foundations are social science, complex systems science, and ICT.
The main concerns and challenges in the science of complex systems in the
context of FuturICT are laid out in this paper with special emphasis on the
Complex Systems route to Social Sciences. This include complex systems having:
many heterogeneous interacting parts; multiple scales; complicated transition
laws; unexpected or unpredicted emergence; sensitive dependence on initial
conditions; path-dependent dynamics; networked hierarchical connectivities;
interaction of autonomous agents; self-organisation; non-equilibrium dynamics;
combinatorial explosion; adaptivity to changing environments; co-evolving
subsystems; ill-defined boundaries; and multilevel dynamics. In this context,
science is seen as the process of abstracting the dynamics of systems from
data. This presents many challenges including: data gathering by large-scale
experiment, participatory sensing and social computation, managing huge
distributed dynamic and heterogeneous databases; moving from data to dynamical
models, going beyond correlations to cause-effect relationships, understanding
the relationship between simple and comprehensive models with appropriate
choices of variables, ensemble modeling and data assimilation, modeling systems
of systems of systems with many levels between micro and macro; and formulating
new approaches to prediction, forecasting, and risk, especially in systems that
can reflect on and change their behaviour in response to predictions, and
systems whose apparently predictable behaviour is disrupted by apparently
unpredictable rare or extreme events. These challenges are part of the FuturICT
agenda
Visualising text co-occurrence networks
We present a tool for automatically generating a visual summary of unstructured text data retrieved from documents, web sites or social media feeds. Unlike tools such as word clouds, we are able to visualise structures and topic relationships occurring in a document. These relationships are determined by a unique approach to co-occurrence analysis. The algorithm applies a decaying function to the distance between word pairs found in the original text such that words regularly occurring close to each other score highly, but even words occurring some distance apart will make a small contribution to the overall co-occurrence score. This is in contrast to other algorithms which simply count adjacent words or use a sliding window of fixed size. We show, with examples, how the network generated can be presented in tree or graph format. The tree format allows for the user to interact with the visualisation and expand or contract the data to a preferred level of detail. The tool is available as a web application and can be viewed using any modern web browse
An Integrated Mechanistic Model of Mindfulness-Oriented Recovery Enhancement for Opioid-Exposed Mother–Infant Dyads
A growing body of neurobiological and psychological research sheds light on the mechanisms underlying the development and maintenance of opioid use disorder and its relation to parenting behavior. Perinatal opioid use is associated with risks for women and children, including increased risk of child maltreatment. Drawing from extant data, here we provide an integrated mechanistic model of perinatal opioid use, parenting behavior, infant attachment, and child well-being to inform the development and adaptation of behavioral interventions for opioid-exposed mother–infant dyads. The model posits that recurrent perinatal opioid use may lead to increased stress sensitivity and reward dysregulation for some mothers, resulting in decreased perceived salience of infant cues, disengaged parenting behavior, disrupted infant attachment, and decreased child well-being. We conclude with a discussion of Mindfulness-Oriented Recovery Enhancement as a means of addressing mechanisms undergirding perinatal opioid use, parenting, and attachment, presenting evidence on the efficacy and therapeutic mechanisms of mindfulness. As perinatal opioid use increases in the United States, empirically informed models can be used to guide treatment development research and address this growing concern
Social density processes regulate the functioning and performance of foraging human teams
Social density processes impact the activity and order of collective behaviours in a variety of biological systems. Much effort has been devoted to understanding how density of people affects collective human motion in the context of pedestrian flows. However, there is a distinct lack of empirical data investigating the effects of social density on human behaviour in cooperative contexts. Here, we examine the functioning and performance of human teams in a central-place foraging arena using high-resolution GPS data. We show that team functioning (level of coordination) is greatest at intermediate social densities, but contrary to our expectations, increased coordination at intermediate densities did not translate into improved collective foraging performance, and foraging accuracy was equivalent across our density treatments. We suggest that this is likely a consequence of foragers relying upon visual channels (local information) to achieve coordination but relying upon auditory channels (global information) to maximise foraging returns. These findings provide new insights for the development of more sophisticated models of human collective behaviour that consider different networks for communication (e.g. visual and vocal) that have the potential to operate simultaneously in cooperative contexts
Autocracy-Sustaining Versus Democratic Federalism:Explaining the Divergent Trajectories of Territorial Politics in Russia and Western Europe
This article provides a comparative assessment of territorial politics in Russia and Western Europe. The consolidation or deepening of regional autonomy in Western Europe contrasts with the transformation of Russia from a segmented and highly centrifugal state into a centralized authoritarian state in the course of just two decades. The consolidation of territorial politics in Western Europe is linked to the presence of endogenous safeguards that are built into their territorial constitutional designs and most importantly to the dynamics that emanate from multi-level party competition in the context of a liberal and multi-level democracy. In contrast, in Russia, neither endogenous safeguards nor multi-level party democracy play an important role in explaining the dynamics of Russian federalism, but who controls key state resources instead. We argue that under Putin power dependencies between the Russian center and the regions are strongest where regional democracy is at its weakest, thus producing ‘autocracy-sustaining’ instead of a democratic federation. By studying the relationship between federalism and democracy in cases where both concepts are mutually reinforcing (as in Western Europe) with the critical case of Russia where they are not, we question the widely held view that democracy is a necessary pre-condition for federalism.Peer reviewe
- …
