2,950 research outputs found

    Precision Cosmology from the Lyman-alpha Forest: Power Spectrum and Bispectrum

    Full text link
    We investigate the promise of the Ly-alpha forest for high precision cosmology in the era of the Sloan Digital Sky Survey using low order N-point statistics. We show that with the existing data one can determine the amplitude, slope and curvature of the slope of the matter power spectrum with a few percent precision. Higher order statistics such as the bispectrum provide independent information that can confirm and improve upon the statistical precision from the power spectrum alone. The achievable precision is comparable to that from the cosmic microwave background with upcoming satellites, and complements it by measuring the power spectrum amplitude and shape at smaller scales. Since the data cover the redshift range 2<z<4, one can also extract the evolution of the growth factor and Hubble parameter over this range, and provide useful constraints on the presence of dark energy at z>2.Comment: 14 pages, 17 figures, accepted to MNRAS; minor changes made (section 2) and references adde

    An X-ray WHIM metal absorber from a Mpc-scale empty region of space

    Full text link
    We report a detection of an absorption line at ~44.8 {\AA} in a > 500 ks Chandra HRC-S/LETG X-ray grating spectrum of the blazar H 2356-309. This line can be identified as intervening CV-K{\alpha} absorption, at z\approx0.112, produced by a warm (log T = 5.1 K) intergalactic absorber. The feature is significant at a 2.9{\sigma} level (accounting for the number of independent redshift trials). We estimate an equivalent hydrogen column density of log N_H=19.05 (Z/Zsun)^-1 cm^-2. Unlike other previously reported FUV/X-ray metal detections of warm-hot intergalactic medium (WHIM), this CV absorber lies in a region with locally low galaxy density, at ~2.2 Mpc from the closest galaxy at that redshift, and therefore is unlikely to be associated with an extended galactic halo. We instead tentatively identify this absorber with an intervening Warm-Hot Intergalactic Medium filament possibly permeating a large-scale, 30 Mpc extended, structure of galaxies whose redshift centroid, within a cylinder of 7.5 Mpc radius centered on the line of sight to H 2356-309, is marginally consistent (at a 1.8{\sigma} level) with the redshift of the absorber.Comment: ApJ accepted, 6 pages, 3 figure

    Studying the WHIM Content of the Galaxy Large-Scale Structures along the Line of Sight to H 2356-309

    Full text link
    We make use of a 500ks Chandra HRC-S/LETG spectrum of the blazar H2356-309, combined with a lower S/N spectrum of the same target, to search for the presence of warm-hot absorbing gas associated with two Large-Scale Structures (LSSs) crossed by this sightline at z=0.062 (the Pisces-Cetus Supercluster, PCS) and at z=0.128 ("Farther Sculptor Wall", FSW). No statistically significant (>=3sigma) individual absorption is detected from any of the strong He- or H-like transitions of C, O and Ne at the redshifts of the structures. However we are still able to constrain the physical and geometrical parameters of the associated putative absorbing gas, by performing joint spectral fit of marginal detections and upper limits of the strongest expected lines with our self-consistent hybrid ionization WHIM spectral model. At the redshift of the PCS we identify a warm phase with logT=5.35_-0.13^+0.07 K and log N_H =19.1+/-0.2 cm^-2 possibly coexisting with a hotter and less significant phase with logT=6.9^+0.1_-0.8 K and log N_H=20.1^+0.3_-1.7 cm^-2 (1sigma errors). For the FSW we estimate logT=6.6_-0.2^+0.1 K and log N_H=19.8_-0.8^+0.4 cm^-2. Our constraints allow us to estimate the cumulative number density per unit redshifts of OVII WHIM absorbers. We also estimate the cosmological mass density obtaining Omega_b(WHIM)=(0.021^+0.031_-0.018) (Z/Z_sun)^-1, consistent with the mass density of the intergalactic 'missing baryons' for high metallicities.Comment: 29 pages, 8 figures, 4 tables. Accepted for publication in Ap

    A Comparison of Cosmological Hydrodynamic Codes

    Full text link
    We present a detailed comparison of the simulation results of various cosmological hydrodynamic codes. Starting with identical initial conditions based on the Cold Dark Matter scenario for the growth of structure, we integrate from redshift z=20z=20 to z=0z=0 to determine the physical state within a representative volume of size L3L^3 where L=64h1MpcL=64 h^{-1} {\rm Mpc}. Five independent codes are compared: three of them Eulerian mesh based and two variants of the Smooth Particle Hydrodynamics "SPH" Lagrangian approach. The Eulerian codes were run at N3=(323, 643, 1283, and, 2563)N^3=(32^3,~64^3,~128^3,~{\rm and},~256^3) cells, the SPH codes at N3=323N^3= 32^3 and 64364^3 particles. Results were then rebinned to a 16316^3 grid with the expectation that the rebinned data should converge, by all techniques, to a common and correct result as NN \rightarrow \infty. We find that global averages of various physical quantities do, as expected, tend to converge in the rebinned model, but that uncertainties in even primitive quantities such as T\langle T \rangle, ρ21/2\langle \rho^2\rangle^{1/2} persists at the 3\%-17\% level after completion of very large simulations. The two SPH codes and the two shock capturing Eulerian codes achieve comparable and satisfactory accuracy for comparable computer time in their treatment of the high density, high temperature regions as measured in the rebinned data; the variance among the five codes (at highest resolution) for the mean temperature (as weighted by ρ2\rho^2) is only 4.5\%. Overall the comparison allows us to better estimate errors, it points to ways of improving this current generation of hydrodynamic codes and of suiting their use to problems which exploit their individually best features.Comment: 20p plaintex to appear in The Astrophysical Journal on July 20, 199

    Controllable coherent population transfers in superconducting qubits for quantum computing

    Full text link
    We propose an approach to coherently transfer populations between selected quantum states in one- and two-qubit systems by using controllable Stark-chirped rapid adiabatic passages (SCRAPs). These {\it evolution-time insensitive} transfers, assisted by easily implementable single-qubit phase-shift operations, could serve as elementary logic gates for quantum computing. Specifically, this proposal could be conveniently demonstrated with existing Josephson phase qubits. Our proposal can find an immediate application in the readout of these qubits. Indeed, the broken parity symmetries of the bound states in these artificial "atoms" provide an efficient approach to design the required adiabatic pulses.Comment: 4 pages, 6 figures. to appear in Physical Review Letter

    Supernova Feedback and the Hot Gas Filling Fraction of the Interstellar Medium

    Full text link
    Supernovae (SN), the most energetic stellar feedback mechanism, are crucial for regulating the interstellar medium (ISM) and launching galactic winds. We explore how supernova remnants (SNRs) create a multiphase medium by performing 3D hydrodynamical simulations at various SN rates, SS, and ISM average densities, nˉ\bar{n}. The evolution of a SNR in a self-consistently generated three-phase ISM is qualitatively different from that in a uniform or a two-phase warm/cold medium. By travelling faster and further in the low-density hot phase, the domain of a SNR increases by >102.5>10^{2.5}. Varying nˉ\bar{n} and SS, we find that a steady state can only be achieved when the hot gas volume fraction fV,hot0.6±0.1f_{\rm{V,hot}}\lesssim 0.6 \pm 0.1 . Above that level, overlapping SNRs render connecting topology of the hot gas, and the ISM is subjected to thermal runaway. Photoelectric heating (PEH) has a surprisingly strong impact on fV,hotf_{\rm{V,hot}}. For \bar{n}\gtrsim 3 \cm-3 , a reasonable PEH rate is able to suppress the thermal runaway. Overall, we determine the critical SN rate for the onset of thermal runaway to be S_{\rm{crit}} = 200 (\bar{n}/1\cm-3)^k (E_{\rm{SN}}/10^{51}\erg)^{-1} \kpc^{-3} \myr-1, where k=(1.2,2.7)k = (1.2,2.7) for nˉ1\bar{n} \leq 1 and > 1\cm-3 , respectively. We present a fitting formula of the ISM pressure P(nˉP(\bar{n}, SS), which can be used as an effective equation of state in cosmological simulations. Despite the 5 orders of magnitude span of (nˉ,S)(\bar{n},S), the average Mach number varies little: M 0.5±0.2, 1.2±0.3, 2.3±0.9\mathcal{M} \approx \ 0.5\pm 0.2, \ 1.2\pm 0.3,\ 2.3\pm 0.9 for the hot, warm and cold phases, respectively.Comment: 57 pages, 16 figures, 3 tables. ApJ accepte

    Comparisons of Cosmological MHD Galaxy Cluster Simulations to Radio Observations

    Full text link
    Radio observations of galaxy clusters show that there are μ\muG magnetic fields permeating the intra-cluster medium (ICM), but it is hard to accurately constrain the strength and structure of the magnetic fields without the help of advanced computer simulations. We present qualitative comparisons of synthetic VLA observations of simulated galaxy clusters to radio observations of Faraday Rotation Measure (RM) and radio halos. The cluster formation is modeled using adaptive mesh refinement (AMR) magneto-hydrodynamic (MHD) simulations with the assumption that the initial magnetic fields are injected into the ICM by active galactic nuclei (AGNs) at high redshift. In addition to simulated clusters in Xu et al. (2010, 2011), we present a new simulation with magnetic field injections from multiple AGNs. We find that the cluster with multiple injection sources is magnetized to a similar level as in previous simulations with a single AGN. The RM profiles from simulated clusters, both RM|RM| and the dispersion of RM (σRM\sigma_{RM}), are consistent at a first-order with the radial distribution from observations. The correlations between the σRM\sigma_{RM} and X-ray surface brightness from simulations are in a broad agreement with the observations, although there is an indication that the simulated clusters could be slightly over-dense and less magnetized with respect to those in the observed sample. In addition, the simulated radio halos agree with the observed correlations between the radio power versus the cluster X-ray luminosity and between the radio power versus the radio halo size. These studies show that the cluster wide magnetic fields that originate from AGNs and are then amplified by the ICM turbulence (Xu et al. 2010) match observations of magnetic fields in galaxy clusters.Comment: Accepted for publication in Ap

    A Two-Fluid Thermally-Stable Cooling Flow Model

    Full text link
    A new model for cooling flows in X-ray clusters, capable of naturally explaining salient features observed, is proposed. The only requirement is that a significant relativistic component, in the form of cosmic rays (CR), be present in the intra-cluster medium and significantly frozen to the thermal gas. Such an addition qualitatively alters the conventional isobaric thermal instability criterion such that a fluid parcel becomes thermally stable when its thermal pressure drops below a threshold fraction of its CR pressure. Consequently, the lowest possible temperature at any radius is about one third of the ambient temperature {\it at that radius}, exactly as observed, In addition, we suggest that dissipation of internal gravity waves, excited by radial oscillatory motions of inward drifting cooling clouds about their radial equilibrium positions, may be responsible for heating up cooling gas. With the ultimate energy source for powering the cooling X-ray luminosity and heating up cooling gas being gravitational due to inward drifting cooling clouds as well as the general inward flow, heating is spatially distributed and energetically matched with cooling. One desirable property of this heating mechanism is that heating energy is strongly centrally concentrated, providing the required heating for emission-line nebulae.Comment: 13 pages, submitted to ApJ

    A Measurement of the Temperature-Density Relation in the Intergalactic Medium Using a New Lyman-alpha Absorption Line Fitting Method

    Full text link
    The evolution of the temperature in the intergalactic medium is related to the reionization of hydrogen and helium, and has important consequences for our understanding of the Lya forest and of galaxy formation in gravitational models of large-scale structure. We measure the temperature-density relation of intergalactic gas from Lya forest observations of eight quasar spectra with high resolution and signal-to-noise ratio, using a new line fitting technique to obtain a lower cutoff of the distribution of line widths from which the temperature is derived. We carefully test the accuracy of this technique to recover the gas temperature with a hydrodynamic simulation. The temperature at redshift z=(3.9, 3.0, 2.4) is best determined at densities slightly above the mean: T_star=(20200\pm2700, 20200\pm1300, 22600\pm1900)K (statistical error bars) for gas density (in units of the mean density) Delta_star=(1.42\pm0.08, 1.37\pm0.11, 1.66\pm0.11). The power-law index of the temperature-density relation, defined by T=T_star(Delta/Delta_star)^{gamma-1}, is gamma-1= (0.43\pm0.45, 0.29\pm0.30, 0.52\pm0.14) for the same three redshifts. The temperature at the fixed over-density Delta=1.4 is T_1.4=(20100\pm2800, 20300\pm1400, 20700\pm1900)K. These temperatures are higher than expected for photoionized gas in ionization equilibrium with a cosmic background, and can be explained by a gradual additional heating due to on-going HeII reionization. The measurement of the temperature reduces one source of uncertainty in the lower limit to the baryon density implied by the observed mean flux decrement. We find that the temperature cannot be reliably measured for under-dense gas, because the velocities due to expansion always dominate the widths of the corresponding weak lines.Comment: submitted to Ap
    corecore