13 research outputs found

    Isotopic distribution of fission fragments in collisions between 238U beam and 9Be and 12C targets at 24 MeV/u

    Full text link
    Inverse kinematics coupled to a high-resolution spectrometer is used to investigate the isotopic yields of fission fragments produced in reactions between a 238U beam at 24 MeV/u and 9Be and 12C targets. Mass, atomic number and isotopic distributions are reported for the two reactions. These informations give access to the neutron excess and the isotopic distribution widths, which together with the atomic-number and mass distributions are used to investigate the fusion-fission dynamics.Comment: Submitted to PR

    Spatio-temporal permanence and plasticity of foraging trails in young and mature leaf-cutting ant colonies (Atta spp.)

    Get PDF
    The distribution and formation of foraging trails have largely been neglected as factors explaining harvesting patterns of leaf-cutting ants.We applied fractal analysis, circular, and conventional statistics to published and newly recorded trailmaps of seven Atta colonies focusing on three aspects: permanence, spatio-temporal plasticity and colony life stage. In the long term, trail patterns of young and mature Atta colonies revealed that foraging activities were focused on distinct, static sectors that made up only parts of their potentially available foraging range. Within these foraging sectors, trails were typically ephemeral and highly variable in space and time. These ephemeral trails were concentrated around permanent trunk trails in mature and around nest entrances in young colonies. Besides these similarities, the comparison of trail systems between the two life stages indicated that young colonies exploited fewer leaf sources, used smaller and less-complex systems of foraging trails, preferred different life forms as host plants, and switched hosts more often compared with mature colonies. Based on these analyses, we propose a general hypothesis which describes the foraging pattern in Atta as a result of initial foraging experiences, spatio-temporal distribution of suitable host plants, energetic constraints, and other factors such as seasonality and interspecific predatio

    LHCb calorimeters: Technical Design Report

    Get PDF

    LHCb RICH: Technical Design Report

    Get PDF

    LHCb magnet: Technical Design Report

    Get PDF

    LHCb muon system: Technical Design Report

    Get PDF

    Isotopic fission fragment distributions as a deep probe to fusion-fission dynamics

    No full text
    During the fission process, the atomic nucleus deforms and elongates up to the two fragments inception and their final separation at the scission deformation. The evolution of the nucleus energy with deformation defines a potential energy landscape in the multidimensional deformation space. It is determined by the macroscopic properties of the nucleus, and is also strongly influenced by the single-particle structure of the nucleus, which modifies the macroscopic energy minima. The fission fragment distribution is a direct consequence of the deformation path the nucleus has encountered, and therefore is the most genuine experimental observation of the potential energy landscape of the deforming nucleus. Very asymmetric fusion-fission reactions at energy close to the Coulomb barrier, produce well-defined conditions of the compound nucleus formation, where processes such as quasi-fission, pre-equilibrium emission and incomplete fusion are negligible. In the same time, the excitation energy is sufficient to reduce significantly structural effects, and mostly the macroscopic part of the potential is responsible for the formation of the fission fragments. We use inverse kinematics combined with a spectrometer to select and identify the fission fragments produced in 238U+12C at a bombarding energy close to and well-above the Coulomb barrier. For the first time, the isotopic yields are measured over the complete atomic-number distribution, between Z=30 and Z=63. In the experimental set-up, it is also possible to identify transfer-induced reactions, which lead to low-energy fissio

    Fission fragment yields from heavy-ion-induced reactions measured with a fragment separator

    No full text
    The systematic study of fission fragment yields under different initial conditions has provided valuable experimental data for benchmarking models of fission product yields. Nuclear reactions using inverse kinematics coupled to the use of a high-resolution spectrometer with good fragment identification are shown here to be a powerful tool to measure the inclusive isotopic yields of fission fragments. In-flight fusion-fission was used in this work to produce secondary beams of neutron-rich isotopes in the collisions of a238^{238}U beam at 24 MeV/u with9^{9}Be and12^{12}C targets at GANIL using the LISE3 fragment separator. Unique identification of the A, Z, and atomic charge state, q, of fission products was attained with the ΔE\Delta E -TKE-B ρ\rho -ToF measurement technique. Mass, and atomic number distributions are reported for the two reactions. The results show the importance of different reaction mechanisms in the two cases. The optimal target material for higher yields of neutron-rich high-Z isotopes produced in fusion-fission reactions as a function of projectile energy is discussed
    corecore