9,411 research outputs found
Chern-Simons action for zero-mode supporting gauge fields in three dimensions
Recent results on zero modes of the Abelian Dirac operator in three
dimensions support to some degree the conjecture that the Chern-Simons action
admits only certain quantized values for gauge fields that lead to zero modes
of the corresponding Dirac operator. Here we show that this conjecture is wrong
by constructing an explicit counter-example.Comment: version as published in PRD, minor change
Near-UV photolysis cross sections of CH_3OOH and HOCH_2OOH determined via action spectroscopy
Knowledge of molecular photolysis cross sections is important for determining atmospheric lifetimes and fates of many species. A method and laser apparatus for measurement of these cross sections in the near-ultraviolet (UV) region is described. The technique is based on action spectroscopy, where the yield of a photodissociation product (in this case OH) is measured as a function of excitation energy. For compounds yielding OH, this method can be used to measure near-UV photodissociation cross section as low as 10−23 cm2 molecule−1. The method is applied to determine the photodissociation cross sections for methyl hydroperoxide (CH3OOH; MHP) and hydroxymethyl hydroperoxide (HOCH2OOH; HMHP) in the 305–365 nm wavelength range. The measured cross sections are in good agreement with previous measurements of absorption cross sections
Near-IR photodissociation of peroxy acetyl nitrate
Measurements of the C-H overtone transition strengths combined with estimates of the photodissociation cross sections for these transitions suggest that near-IR photodissociation of peroxy acetyl nitrate (PAN) is less significant (Jnear−IR ~3×10^−8 s^−1 at noon) in the lower atmosphere than competing sinks resulting from unimolecular decomposition and ultraviolet photolysis. This is in contrast to the photochemical behavior of a related peroxy nitrate, pernitric acid (PNA), that undergoes rapid near-IR photolysis in the atmosphere with Jnear−IR ~10^−5 s^−1 at noon (Roehl et al., 2002). This difference is attributed to the larger binding energy and larger number of vibrational degrees of 10 freedom in PAN, which make 4[Greek nu]CH the lowest overtone excitation with a high photodissociation yield (as opposed to 2[Greek nu]OH in PNA)
The abundance of high-redshift objects as a probe of non-Gaussian initial conditions
The observed abundance of high-redshift galaxies and clusters contains
precious information about the properties of the initial perturbations. We
present a method to compute analytically the number density of objects as a
function of mass and redshift for a range of physically motivated non-Gaussian
models. In these models the non-Gaussianity can be dialed from zero and is
assumed to be small. We compute the probability density function for the
smoothed dark matter density field and we extend the Press and Schechter
approach to mildly non-Gaussian density fields. The abundance of high-redshift
objects can be directly related to the non-Gaussianity parameter and thus to
the physical processes that generated deviations from the Gaussian behaviour.
Even a skewness parameter of order 0.1 implies a dramatic change in the
predicted abundance of z\gap 1 objects. Observations from NGST and X-ray
satellites (XMM) can be used to accurately measure the amount of
non-Gaussianity in the primordial density field.Comment: Minor changes to match the accepted ApJ version (ApJ, 539
Field-enhanced direct tunneling in ultrathin atomic-layer-deposition-grown Au-Al2O3-Cr metal-insulator-metal structures
Metal-insulator-metal structures based on ultrathin high-k dielectric films are underpinning a rapidly increasing number of devices and applications. Here, we report detailed electrical characterizations of asymmetric metal-insulator-metal devices featuring atomic layer deposited 2-nm-thick Al2O3 films. We find a high consistency in the current density as a function of applied electric field between devices with very different surface areas and significant asymmetries in the IV characteristics. We show by TEM that the thickness of the dielectric film and the quality of the metal-insulator interfaces are highly uniform and of high quality, respectively. In addition, we develop a model which accounts for the field enhancement due to the small sharp features on the electrode surface and show that this can very accurately describe the observed asymmetry in the current-voltage characteristic, which cannot be explained by the difference in work function alone
Fermionic Determinant of the Massive Schwinger Model
A representation for the fermionic determinant of the massive Schwinger
model, or , is obtained that makes a clean separation between the
Schwinger model and its massive counterpart. From this it is shown that the
index theorem for follows from gauge invariance, that the Schwinger
model's contribution to the determinant is canceled in the weak field limit,
and that the determinant vanishes when the field strength is sufficiently
strong to form a zero-energy bound state
A stab in the dark: chick killing by brood parasitic honeyguides
The most virulent avian brood parasites obligately kill host young soon after hatching, thus ensuring their monopoly of host parental care. While the host eviction behaviour of cuckoos (Cuculidae) is well documented, the host killing behaviour of honeyguide (Indicatoridae) chicks has been witnessed only once, 60 years ago, and never in situ in host nests. Here, we report from the Afrotropical greater honeyguide the first detailed observations of honeyguides killing host chicks with their specially adapted bill hooks, based on repeated video recordings (available in the electronic supplementary material). Adult greater honeyguides puncture host eggs when they lay their own, but in about half of host nests at least one host egg survived, precipitating chick killing by the honeyguide hatchling. Hosts always hatched after honeyguide chicks, and were killed within hours. Despite being blind and in total darkness, honeyguides attacked host young with sustained biting, grasping and shaking motions. Attack time of 1–5 min was sufficient to cause host death, which took from 9 min to over 7 h from first attack. Honeyguides also bit unhatched eggs and human hands, but only rarely bit the host parents feeding them
Quantum walks of correlated photon pairs in two-dimensional waveguide arrays
We demonstrate quantum walks of correlated photons in a 2D network of
directly laser written waveguides coupled in a 'swiss cross' arrangement. The
correlated detection events show high-visibility quantum interference and
unique composite behaviour: strong correlation and independence of the quantum
walkers, between and within the planes of the cross. Violations of a
classically defined inequality, for photons injected in the same plane and in
orthogonal planes, reveal non-classical behaviour in a non-planar structure.Comment: 5 pages, 5 figure
- …