549 research outputs found

    What is simple is actually quite complex: A critical note on terminology in the domain of language and communication

    Get PDF
    On the surface, the fields of animal communication and human linguistics have arrived at conflicting theories and conclusions with respect to the effect of social complexity on communicative complexity. For example, an increase in group size is argued to have opposite consequences on human versus animal communication systems: although an increase in human community size leads to some types of language simplification, an increase in animal group size leads to an increase in signal complexity. But do human and animal communication systems really show such a fundamental discrepancy? Our key message is that the tension between these two adjacent fields is the result of (a) a focus on different levels of analysis (namely, signal variation or grammar-like rules) and (b) an inconsistent use of terminology (namely, the terms “simple” and “complex”). By disentangling and clarifying these terms with respect to different measures of communicative complexity, we show that although animal and human communication systems indeed show some contradictory effects with respect to signal variability, they actually display essentially the same patterns with respect to grammar-like structure. This is despite the fact that the definitions of complexity and simplicity are actually aligned for signal variability, but diverge for grammatical structure. We conclude by advocating for the use of more objective and descriptive terms instead of terms such as “complexity,” which can be applied uniformly for human and animal communication systems—leading to comparable descriptions of findings across species and promoting a more productive dialogue between fields

    Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle

    Get PDF
    The nitrogen (N) cycle contains two different processes of dissimilatory nitrate (NO<sub>3</sub><sup>−</sup>) reduction, denitrification and dissimilatory NO<sub>3</sub><sup>−</sup> reduction to ammonium (DNRA). While there is general agreement that the denitrification process takes place in many soils, the occurrence and importance of DNRA is generally not considered. Two approaches have been used to investigate DNRA in soil, (1) microbiological techniques to identify soil microorganisms capable of DNRA and (2) <sup>15</sup>N tracing to elucidate the occurrence of DNRA and to quantify gross DNRA rates. There is evidence that many soil bacteria and fungi have the ability to perform DNRA. Redox status and C/NO<sub>3</sub><sup>−</sup> ratio have been identified as the most important factors regulating DNRA in soil. <sup>15</sup>N tracing studies have shown that gross DNRA rates can be a significant or even a dominant NO<sub>3</sub><sup>−</sup> consumption process in some ecosystems. Moreover, a link between heterotrophic nitrification and DNRA provides an alternative pathway of ammonium (NH<sub>4</sub><sup>+</sup>) production to mineralisation. Numerical <sup>15</sup>N tracing models are particularly useful when investigating DNRA in the context of other N cycling processes. The results of correlation and regression analyses show that highest gross DNRA rates can be expected in soils with high organic matter content in humid regions, while its relative importance is higher in temperate climates. With this review we summarise the importance and current knowledge of this often overlooked NO<sub>3</sub><sup>−</sup> consumption process within the terrestrial N cycle. We strongly encourage considering DNRA as a relevant process in future soil N cycling investigations

    Parallel functional and stoichiometric trait shifts in South American and African forest communities with elevation

    Get PDF
    The Amazon and Congo basins are the two largest continuous blocks of tropical forest with a central role for global biogeochemical cycles and ecology. However, both biomes differ in structure and species richness and composition. Understanding future directions of the response of both biomes to environmental change is paramount. We used one elevational gradient on both continents to investigate functional and stoichiometric trait shifts of tropical forest in South America and Africa. We measured community-weighted functional canopy traits and canopy and topsoil delta N-15 signatures. We found that the functional forest composition response along both transects was parallel, with a shift towards more nitrogen-conservative species at higher elevations. Moreover, canopy and topsoil delta N-15 signals decreased with increasing altitude, suggesting a more conservative N cycle at higher elevations. This cross-continental study provides empirical indications that both South American and African tropical forest show a parallel response with altitude, driven by nitrogen availability along the elevational gradients, which in turn induces a shift in the functional forest composition. More standardized research, and more research on other elevational gradients is needed to confirm our observations

    Stratified community responses to methane and sulfate supplies in mud volcano deposits: insights from an <i>in vitro</i> experiment

    Get PDF
    Numerous studies on marine prokaryotic communities have postulated that a process of anaerobic oxidation of methane (AOM) coupled with sulfate reduction (SR) is the main methane sink in the world's oceans. AOM has also been reported in the deep biosphere. But the responses of the primary microbial players in eliciting changes in geochemical environments, specifically in methane and sulfate supplies, have yet to be fully elucidated. Marine mud volcanoes (MVs) expel a complex fluid mixture of which methane is the primary component, forming an environment in which AOM is a common phenomenon. In this context, we attempted to identify how the prokaryotic community would respond to changes in methane and sulfate intensities, which often occur in MV environments in the form of eruptions, diffusions or seepage. We applied an integrated approach, including (i) biochemical surveys of pore water originated from MV, (ii) in vitro incubation of mud breccia, and (iii) prokaryotic community structure analysis. Two distinct AOM regions were clearly detected. One is related to the sulfate methane transition zone (SMTZ) at depth of 30-55 cm below the sea floor (bsf); the second is at 165-205 cm bsf with ten times higher rates of AOM and SR. This finding contrasts with the sulfide concentrations in pore waters and supports the suggestion that potential AOM activity below the SMTZ might be an important methane sink that is largely ignored or underestimated in oceanic methane budget calculations. Moreover, the incubation conditions below the SMTZ favor the growth of methanotrophic archaeal group ANME-2 compared to ANME-1, and promote the rapid growth and high diversity of bacterial communities. These incubation conditions also promote the increase of richness in bacterial communities. Our results provide direct evidence of the mechanisms by which deep AOM processes can affect carbon cycling in the deep biosphere and global methane biochemistry

    Foldamers of ÎČ-peptides : conformational preference of peptides formed by rigid building blocks : The first MI-IR spectra of a triamide nanosystem

    Get PDF
    To determine local chirality driven conformational preferences of small aminocyclobutane-1-carboxylic acid derivatives, X-(ACBA) n -Y, their matrix-isolation IR spectra were recorded and analyzed. For the very first time model systems of this kind were deposited in a frozen (~10 K) noble gas matrix to reduce line width and thus, the recorded sharp vibrational lines were analyzed in details. For cis-(S,R)-1 monomer two “zigzag” conformers composed of either a six or an eight-membered H-bonded pseudo ring was identified. For trans-(S,S)-2 stereoisomer a zigzag of an eight-membered pseudo ring and a helical building unit were determined. Both findings are fully consistent with our computational results, even though the relative conformational ratios were found to vary with respect to measurements. For the dimers (S,R,S,S)-3 and (S,S,S,R)-4 as many as four different cis,trans and three different trans,cis conformers were localized in their matrix-isolation IR (MI-IR) spectra. These foldamers not only agree with the previous computational and NMR results, but also unambiguously show for the first time the presence of a structure made of a cis,trans conformer which links a “zigzag” and a helical foldamer via a bifurcated H-bond. The present work underlines the importance of MI-IR spectroscopy, applied for the first time for triamides to analyze the conformational pool of small biomolecules. We have shown that the local chirality of a ÎČ-amino acid can fully control its backbone folding preferences. Unlike proteogenic α-peptides, ÎČ- and especially (ACBA) n type oligopeptides could thus be used to rationally design and influence foldamer’s structural preferences

    The ‘Galilean Style in Science’ and the Inconsistency of Linguistic Theorising

    Get PDF
    Chomsky’s principle of epistemological tolerance says that in theoretical linguistics contradictions between the data and the hypotheses may be temporarily tolerated in order to protect the explanatory power of the theory. The paper raises the following problem: What kinds of contradictions may be tolerated between the data and the hypotheses in theoretical linguistics? First a model of paraconsistent logic is introduced which differentiates between week and strong contradiction. As a second step, a case study is carried out which exemplifies that the principle of epistemological tolerance may be interpreted as the tolerance of week contradiction. The third step of the argumentation focuses on another case study which exemplifies that the principle of epistemological tolerance must not be interpreted as the tolerance of strong contradiction. The reason for the latter insight is the unreliability and the uncertainty of introspective data. From this finding the author draws the conclusion that it is the integration of different data types that may lead to the improvement of current theoretical linguistics and that the integration of different data types requires a novel methodology which, for the time being, is not available
    • 

    corecore