69 research outputs found

    Epithelial IL-23R Signaling Licenses Protective IL-22 Responses in Intestinal Inflammation.

    Get PDF
    A plethora of functional and genetic studies have suggested a key role for the IL-23 pathway in chronic intestinal inflammation. Currently, pathogenic actions of IL-23 have been ascribed to specific effects on immune cells. Herein, we unveil a protective role of IL-23R signaling. Mice deficient in IL-23R expression in intestinal epithelial cells (Il23R(ΔIEC)) have reduced Reg3b expression, show a disturbed colonic microflora with an expansion of flagellated bacteria, and succumb to DSS colitis. Surprisingly, Il23R(ΔIEC) mice show impaired mucosal IL-22 induction in response to IL-23. αThy-1 treatment significantly deteriorates colitis in Il23R(ΔIEC) animals, which can be rescued by IL-22 application. Importantly, exogenous Reg3b administration rescues DSS-treated Il23R(ΔIEC) mice by recruiting neutrophils as IL-22-producing cells, thereby restoring mucosal IL-22 levels. The study identifies a critical barrier-protective immune pathway that originates from, and is orchestrated by, IL-23R signaling in intestinal epithelial cells.This work was supported by DFG Excellence Cluster Inflammation at Interfaces; the SFB877 B9, the SFB 1182 C2 project, and the BMBF IHEC DEEP project TP2.3 and 5.2 (to P.R.); the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007- 2013)/ERC grant agreement 260961 (to A.K.); the National Institute for Health Research Cambridge Biomedical Research Centre, ERC CoG GA 648889, and WTIA 106260-Z-14-Z (to A.K.); NIH DK53056, DK44319, and DK088199 (to R.S.B.); and the Fondation pour la Recherche Medicale (to M.C.).This is the final version of the article. It first appeared from Cell/Elsevier via http://dx.doi.org/10.1016/j.celrep.2016.07.05

    N-terminal acetylation shields proteins from degradation and promotes age-dependent motility and longevity

    Get PDF
    Most eukaryotic proteins are N-terminally acetylated, but the functional impact on a global scale has remained obscure. Using genome-wide CRISPR knockout screens in human cells, we reveal a strong genetic dependency between a major N-terminal acetyltransferase and specific ubiquitin ligases. Biochemical analyses uncover that both the ubiquitin ligase complex UBR4-KCMF1 and the acetyltransferase NatC recognize proteins bearing an unacetylated N-terminal methionine followed by a hydrophobic residue. NatC KO-induced protein degradation and phenotypes are reversed by UBR knockdown, demonstrating the central cellular role of this interplay. We reveal that loss of Drosophila NatC is associated with male sterility, reduced longevity, and age-dependent loss of motility due to developmental muscle defects. Remarkably, muscle-specific overexpression of UbcE2M, one of the proteins targeted for NatC KO-mediated degradation, suppresses defects of NatC deletion. In conclusion, NatC-mediated N-terminal acetylation acts as a protective mechanism against protein degradation, which is relevant for increased longevity and motility. The most common protein modification in eukaryotes is N-terminal acetylation, but its functional impact has remained enigmatic. Here, the authors find that a key role for N-terminal acetylation is shielding proteins from ubiquitin ligase-mediated degradation, mediating motility and longevity.Association Francaise contre les Myopathies 261981, Canadian Institutes of Health Research (CIHR) 249843, United States Department of Health & Human Services National Institutes of Health (NIH) - USA F-12540, Portuguese national funding through Fundaco para a Ciencia e a Tecnologia (FCT) 171752-PR-2009-0222, National Funds through Fundaco para a Ciencia e a Tecnologia (FCT) G008018N, G002721N, University of Bergen MC_UU_00028/6, FDN-143264, FDN-143265, PJT-180285, PJT-463531, R01HG005853, R01HG005084, DL 57/2016/CP1361/CT0019, 2022.01782.PTDC,PTDC/BIA-BID/28441/2017,PTDC/BIA-BID/1606/2020, ALG-01-0145-FEDER-028441, PPBI-POCI-01-0145-FEDER-022122, LISBOA-01-0145-FEDER-022170info:eu-repo/semantics/publishedVersio

    Dimensionality reduction methods for extracting functional networks from large‐scale CRISPR screens

    No full text
    Abstract CRISPR‐Cas9 screens facilitate the discovery of gene functional relationships and phenotype‐specific dependencies. The Cancer Dependency Map (DepMap) is the largest compendium of whole‐genome CRISPR screens aimed at identifying cancer‐specific genetic dependencies across human cell lines. A mitochondria‐associated bias has been previously reported to mask signals for genes involved in other functions, and thus, methods for normalizing this dominant signal to improve co‐essentiality networks are of interest. In this study, we explore three unsupervised dimensionality reduction methods—autoencoders, robust, and classical principal component analyses (PCA)—for normalizing the DepMap to improve functional networks extracted from these data. We propose a novel “onion” normalization technique to combine several normalized data layers into a single network. Benchmarking analyses reveal that robust PCA combined with onion normalization outperforms existing methods for normalizing the DepMap. Our work demonstrates the value of removing low‐dimensional signals from the DepMap before constructing functional gene networks and provides generalizable dimensionality reduction‐based normalization tools

    RNF4 and USP7 cooperate in ubiquitin-regulated steps of DNA replication

    No full text
    DNA replication requires precise regulation achieved through post-translational modifications, including ubiquitination and SUMOylation. These modifications are linked by the SUMO-targeted E3 ubiquitin ligases (STUbLs). Ring finger protein 4 (RNF4), one of only two mammalian STUbLs, participates in double-strand break repair and resolving DNA–protein cross-links. However, its role in DNA replication has been poorly understood. Using CRISPR/Cas9 genetic screens, we discovered an unexpected dependency of RNF4 mutants on ubiquitin specific peptidase 7 (USP7) for survival in TP53-null retinal pigment epithelial cells. TP53−/–/RNF4−/–/USP7−/– triple knockout (TKO) cells displayed defects in DNA replication that cause genomic instability. These defects were exacerbated by the proteasome inhibitor bortezomib, which limited the nuclear ubiquitin pool. A shortage of free ubiquitin suppressed the ataxia telangiectasia and Rad3-related (ATR)-mediated checkpoint response, leading to increased cell death. In conclusion, RNF4 and USP7 work cooperatively to sustain a functional level of nuclear ubiquitin to maintain the integrity of the genome

    A method for benchmarking genetic screens reveals a predominant mitochondrial bias

    No full text
    Abstract We present FLEX (Functional evaluation of experimental perturbations), a pipeline that leverages several functional annotation resources to establish reference standards for benchmarking human genome‐wide CRISPR screen data and methods for analyzing them. FLEX provides a quantitative measurement of the functional information captured by a given gene‐pair dataset and a means to explore the diversity of functions captured by the input dataset. We apply FLEX to analyze data from the diverse cell line screens generated by the DepMap project. We identify a predominant mitochondria‐associated signal within co‐essentiality networks derived from these data and explore the basis of this signal. Our analysis and time‐resolved CRISPR screens in a single cell line suggest that the variable phenotypes associated with mitochondria genes across cells may reflect screen dynamics and protein stability effects rather than genetic dependencies. We characterize this functional bias and demonstrate its relevance for interpreting differential hits in any CRISPR screening context. More generally, we demonstrate the utility of the FLEX pipeline for performing robust comparative evaluations of CRISPR screens or methods for processing them

    A method for benchmarking genetic screens reveals a predominant mitochondrial bias

    No full text
    We present FLEX (Functional evaluation of experimental perturbations), a pipeline that leverages several functional annotation resources to establish reference standards for benchmarking human genome‐wide CRISPR screen data and methods for analyzing them. FLEX provides a quantitative measurement of the functional information captured by a given gene‐pair dataset and a means to explore the diversity of functions captured by the input dataset. We apply FLEX to analyze data from the diverse cell line screens generated by the DepMap project. We identify a predominant mitochondria‐associated signal within co‐essentiality networks derived from these data and explore the basis of this signal. Our analysis and time‐resolved CRISPR screens in a single cell line suggest that the variable phenotypes associated with mitochondria genes across cells may reflect screen dynamics and protein stability effects rather than genetic dependencies. We characterize this functional bias and demonstrate its relevance for interpreting differential hits in any CRISPR screening context. More generally, we demonstrate the utility of the FLEX pipeline for performing robust comparative evaluations of CRISPR screens or methods for processing them

    A scalable platform for efficient CRISPR-Cas9 chemical-genetic screens of DNA damage-inducing compounds

    No full text
    Abstract Current approaches to define chemical-genetic interactions (CGIs) in human cell lines are resource-intensive. We designed a scalable chemical-genetic screening platform by generating a DNA damage response (DDR)-focused custom sgRNA library targeting 1011 genes with 3033 sgRNAs. We performed five proof-of-principle compound screens and found that the compounds’ known modes-of-action (MoA) were enriched among the compounds’ CGIs. These scalable screens recapitulated expected CGIs at a comparable signal-to-noise ratio (SNR) relative to genome-wide screens. Furthermore, time-resolved CGIs, captured by sequencing screens at various time points, suggested an unexpected, late interstrand-crosslinking (ICL) repair pathway response to camptothecin-induced DNA damage. Our approach can facilitate screening compounds at scale with 20-fold fewer resources than commonly used genome-wide libraries and produce biologically informative CGI profiles
    • 

    corecore