399 research outputs found
On the physical origin of the second solar spectrum of the Sc II line at 4247 A
The peculiar three-peak structure of the linear polarization profile shown in
the second solar spectrum by the Ba II line at 4554 A has been interpreted as
the result of the different contributions coming from the barium isotopes with
and without hyperfine structure (HFS). In the same spectrum, a triple peak
polarization signal is also observed in the Sc II line at 4247 A. Scandium has
a single stable isotope (^{45}Sc), which shows HFS due to a nuclear spin I=7/2.
We investigate the possibility of interpreting the linear polarization profile
shown in the second solar spectrum by this Sc II line in terms of HFS. A
two-level model atom with HFS is assumed. Adopting an optically thin slab
model, the role of atomic polarization and of HFS is investigated, avoiding the
complications caused by radiative transfer effects. The slab is assumed to be
illuminated from below by the photospheric continuum, and the polarization of
the radiation scattered at 90 degrees is investigated. The three-peak structure
of the scattering polarization profile observed in this Sc II line cannot be
fully explained in terms of HFS. Given the similarities between the Sc II line
at 4247 A and the Ba II line at 4554 A, it is not clear why, within the same
modeling assumptions, only the three-peak Q/I profile of the barium line can be
fully interpreted in terms of HFS. The failure to interpret this Sc II
polarization signal raises important questions, whose resolution might lead to
significant improvements in our understanding of the second solar spectrum. In
particular, if the three-peak structure of the Sc II signal is actually
produced by a physical mechanism neglected within the approach considered here,
it will be extremely interesting not only to identify this mechanism, but also
to understand why it seems to be less important in the case of the barium line.Comment: 8 pages, 8 figures, and 1 table. Accepted for publication in
Astronomy and Astrophysic
Theoretical formulation of Doppler redistribution in scattering polarization within the framework of the velocity-space density matrix formalism
Within the framework of the density matrix theory for the generation and
transfer of polarized radiation, velocity density matrix correlations represent
an important physical aspect that, however, is often neglected in practical
applications by adopting the simplifying approximation of complete
redistribution on velocity. In this paper, we present an application of the
Non-LTE problem for polarized radiation taking such correlations into account
through the velocity-space density matrix formalism. We consider a two-level
atom with infinitely sharp upper and lower levels, and we derive the
corresponding statistical equilibrium equations neglecting the contribution of
velocity-changing collisions. Coupling such equations with the radiative
transfer equations for polarized radiation, we derive a set of coupled
equations for the velocity-dependent source function. This set of equations is
then particularized to the case of a plane-parallel atmosphere. The equations
presented in this paper provide a complete and solid description of the physics
of pure Doppler redistribution, a phenomenon generally described within the
framework of the redistribution matrix formalism. The redistribution matrix
corresponding to this problem (generally referred to as R_I) is derived
starting from the statistical equilibrium equations for the velocity-space
density matrix and from the radiative transfer equations for polarized
radiation, thus showing the equivalence of the two approaches.Comment: Accepted for publication in Astronomy & Astrophysic
Isotropic inelastic and superelastic collisional rates in a multiterm atom
The spectral line polarization of the radiation emerging from a magnetized
astrophysical plasma depends on the state of the atoms within the medium, whose
determination requires considering the interactions between the atoms and the
magnetic field, between the atoms and photons (radiative transitions), and
between the atoms and other material particles (collisional transitions). In
applications within the framework of the multiterm model atom (which accounts
for quantum interference between magnetic sublevels pertaining either to the
same J-level or to different J-levels within the same term) collisional
processes are generally neglected when solving the master equation for the
atomic density matrix. This is partly due to the lack of experimental data
and/or of approximate theoretical expressions for calculating the collisional
transfer and relaxation rates (in particular the rates for interference between
sublevels pertaining to different J-levels, and the depolarizing rates due to
elastic collisions). In this paper we formally define and investigate the
transfer and relaxation rates due to isotropic inelastic and superelastic
collisions that enter the statistical equilibrium equations of a multiterm
atom. Under the hypothesis that the atom-collider interaction can be described
by a dipolar operator, we provide expressions that relate the collisional rates
for interference between different J-levels to the usual collisional rates for
J-level populations. Finally, we apply the general equations to the case of a
two-term atom with unpolarized lower term, illustrating the impact of inelastic
and superelastic collisions on scattering polarization through radiative
transfer calculations in a slab of stellar atmospheric plasma anisotropically
illuminated by the photospheric radiation field.Comment: Accepted for publication in Astronomy & Astrophysic
Anomalous circular polarization profiles in the He I 1083.0 nm multiplet from solar spicules
We report Stokes vector observations of solar spicules and a prominence in
the He I 1083 nm multiplet carried out with the Tenerife Infrared Polarimeter.
The observations show linear polarization profiles that are produced by
scattering processes in the presence of a magnetic field. After a careful data
reduction, we demonstrate the existence of extremely asymmetric Stokes V
profiles in the spicular material that we are able to model with two magnetic
components along the line of sight, and under the presence of atomic
orientation in the energy levels that give rise to the multiplet. We discuss
some possible scenarios that can generate the atomic orientation in spicules.
We stress the importance of spectropolarimetric observations across the limb to
distinguish such signals from observational artifacts.Comment: accepted for publication in Ap
Origin of spatial variations of scattering polarization in the wings of the Ca {\sc i} 4227 \AA line
Polarization that is produced by coherent scattering can be modified by
magnetic fields via the Hanle effect. According to standard theory the Hanle
effect should only be operating in the Doppler core of spectral lines but not
in the wings. In contrast, our observations of the scattering polarization in
the Ca {\sc i} 4227 \AA line reveals the existence of spatial variations of the
scattering polarization throughout the far line wings. This raises the question
whether the observed spatial variations in wing polarization have a magnetic or
non-magnetic origin. A magnetic origin may be possible if elastic collisions
are able to cause sufficient frequency redistribution to make the Hanle effect
effective in the wings without causing excessive collisional depolarization, as
suggested by recent theories for partial frequency redistribution with coherent
scattering in magnetic fields. To model the wing polarization we apply an
extended version of the technique based on the "last scattering approximation".
This model is highly successful in reproducing the observed Stokes
polarization (linear polarization parallel to the nearest solar limb),
including the location of the wing polarization maxima and the minima around
the Doppler core, but it fails to reproduce the observed spatial variations of
the wing polarization in terms of magnetic field effects with frequency
redistribution. This null result points in the direction of a non-magnetic
origin in terms of local inhomogeneities (varying collisional depolarization,
radiation-field anisotropies, and deviations from a plane-parallel atmospheric
stratification).Comment: Accepted in May 2009 for publication in The Astrophysical Journa
CLASP Constraints on the Magnetization and Geometrical Complexity of the Chromosphere-Corona Transition Region
The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a suborbital
rocket experiment that on 3rd September 2015 measured the linear polarization
produced by scattering processes in the hydrogen Ly- line of the solar
disk radiation, whose line-center photons stem from the chromosphere-corona
transition region (TR). These unprecedented spectropolarimetric observations
revealed an interesting surprise, namely that there is practically no
center-to-limb variation (CLV) in the line-center signals. Using an
analytical model, we first show that the geometrical complexity of the
corrugated surface that delineates the TR has a crucial impact on the CLV of
the and line-center signals. Secondly, we introduce a statistical
description of the solar atmosphere based on a three-dimensional (3D) model
derived from a state-of-the-art radiation magneto-hydrodynamic simulation. Each
realization of the statistical ensemble is a 3D model characterized by a given
degree of magnetization and corrugation of the TR, and for each such
realization we solve the full 3D radiative transfer problem taking into account
the impact of the CLASP instrument degradation on the calculated polarization
signals. Finally, we apply the statistical inference method presented in a
previous paper to show that the TR of the 3D model that produces the best
agreement with the CLASP observations has a relatively weak magnetic field and
a relatively high degree of corrugation. We emphasize that a suitable way to
validate or refute numerical models of the upper solar chromosphere is by
confronting calculations and observations of the scattering polarization in
ultraviolet lines sensitive to the Hanle effect.Comment: Accepted for publication in The Astrophysical Journal Letter
- …
