167 research outputs found

    Electrothermal simulation of large-area semiconductor devices

    Get PDF
    The lateral charge transport in thin-film semiconductor devices is affected by the sheet resistance of the various layers. This may lead to a non-uniform current distribution across a large-area device resulting in inhomogeneous luminance, for example, as observed in organic light-emitting diodes. The resistive loss in electrical energy is converted into thermal energy via Joule heating, which results in a temperature increase inside the device. On the other hand, the charge transport properties of the device materials are also temperature-dependent, such that we are facing a two-way coupled electrothermal problem. It has been demonstrated that adding thermal effects to an electrical model significantly changes the results. We present a mathematical model for the steady-state distribution of the electric potential and of the temperature across one electrode of a large-area semiconductor device, as well as numerical solutions obtained using the finite element method

    Direct SIMS Determination of the InxGa1-xN Mole Fraction

    Get PDF
    We demonstrate that our secondary mass ion spectroscopy (SIMS) method for the determination of the mole fraction in solid InxGa1-xN solutions is accurate and reproduceable without need of reference samples. The method is based on measuring relative current values of CsM+ (M=Ga, In) secondary ions. The claim of reliable SIMS determination without reference samples was confirmed by four independent analytical methods on the same samples with a relative error in the InN mole fraction determination below 15

    Effects of the linear polarization of polariton condensates in their propagation in codirectional couplers

    Full text link
    We report on the linear polarization of polariton condensates in a codirectional coupler that allows evanescent coupling between adjacent waveguides. During the condensate's formation, polaritons usually acquire a randomly oriented polarization, however, our results reveal a preferential orientation of the linear polarization along the waveguide propagation path. Furthermore, we observe polarization-dependent intensity oscillations in the output terminal of the coupler, and we identify the mode beating between the linear-polarized eigenmodes as the origin of these oscillations. Our findings provide an insight into the control of the polarization of polariton condensates, paving the way for the development of spin-based polaritonic architectures where condensates propagate over macroscopic distancesThis work has been partly supported by the Spanish MINECO Grant Nos. MAT2017-83722-R and PID2020-113445GB-I00. A.Y. and I.A.S. were financially supported by the Ministry of Science and Higher Education of the Russian Federation through Megagrant Number 14.Y26.31.0015 and Goszadanie No. 2019-1246. I.A.S. acknowledges also the support from theIcelandic research fund, Grant No. 163082-051. The Würzburgand Jena group acknowledges financial support within the DFGProject Nos. PE 523/18-1 and KL3124/2-1. The Würzburggroup acknowledges financial support by the German ResearchFoundation (DFG) under Germany’s Excellence Strategy−EXC2147 “ct.qmat” (Project No. 390858490) and is grateful forsupport by the state of Bavari

    Braneworld effective action and origin of inflation

    Get PDF
    We construct braneworld effective action in two brane Randall-Sundrum model and show that the radion mode plays the role of a scalar field localizing essentially nonlocal part of this action. Non-minimal curvature coupling of this field reflects the violation of AdS/CFT-correspondence for finite values of brane separation. Under small detuning of the brane tension from the Randall-Sundrum flat brane value, the radion mode can play the role of inflaton. Inflationary dynamics corresponds to branes moving apart in the field of repelling interbrane inflaton-radion potential and implies the existence acceleration stage caused by remnant cosmological constant at late (large brane separation) stages of evolution. We discuss the possibility of fixing initial conditions in this model within the concept of braneworld creation from the tunneling or no-boundary cosmological state, which formally replaces the conventional moduli stabilization mechanism.Comment: 18 pages, LaTeX, the effective action form factor is corrected for small separation between branes and new references are adde

    Software environment for controlling and re-configuration of Xilinx Virtex FPGAs – TWEPP-07

    Get PDF
    The Time Projection Chamber is one of the detectors of the ALICE experiment, that is currently being commissioned at the Large Hadron Collider at CERN. The Detector Control System is used for control and monitoring of the system. For the TPC Front-End Electronics (FEE) the control node is a Readout Control Unit that communicates to higher layers via Ethernet, using the standard framework DIM. The Readout Control Unit is equipped with commercial SRAM based FPGAs that will experience errors due to the radiation environment they are operating in. This article will present the implemented hardware solution for error correction and will focus on the software environment for configuration and controlling of the system – TWEPP-07

    Counter-directional polariton coupler

    Get PDF
    The Wurzburg group acknowledges the financial support by the state of Bavaria and the DFG within the project Schn1376-3.1. J.B. and S.K. acknowledge funding from DFG grant KL3124/2-1. The Madrid team acknowledges financial support by the Spanish MINECO Grants MAT2014-53119-C2-1-R and MAT2017-83722-R.We report on an on-chip routing device for propagating condensates of exciton-polaritons. This counter-directional coupler implements signal control by a photonic microdisk potential, which couples two lithographically defined waveguides and reverses the condensate's propagation direction. By varying the structural sizes, we utilize the conjunction of the different dimensionalities to additionally evidence the functionality of a polaritonic resonant tunnel diode. Furthermore, we show the ultra fast time dynamics of the device via ps-resolved streak camera measurements. This scalable, all-directional coupler element is a central building block for compact non-linear on-chip photonic architectures.PostprintPeer reviewe

    Local circuits targeting parvalbumin-containing interneurons in layer IV of rat barrel cortex

    Get PDF
    Interactions between inhibitory interneurons and excitatory spiny neurons and also other inhibitory cells represent fundamental network properties which cause the so-called thalamo-cortical response transformation and account for the well-known receptive field differences of cortical layer IV versus thalamic neurons. We investigated the currently largely unknown morphological basis of these interactions utilizing acute slice preparations of barrel cortex in P19-21 rats. Layer IV spiny (spiny stellate, star pyramidal and pyramidal) neurons or inhibitory (basket and bitufted) interneurons were electrophysiologically characterized and intracellularly biocytin-labeled. In the same slice, we stained parvalbumin-immunoreactive (PV-ir) interneurons as putative target cells after which the tissue was subjected to confocal image acquisition. Parallel experiments confirmed the existence of synaptic contacts in these types of connection by correlated light and electron microscopy. The axons of the filled neurons differentially targeted barrel PV-ir interneurons: (1) The relative number of all contacted PV-ir cells within the axonal sphere was 5–17% for spiny (n = 10), 32 and 58% for basket (n = 2) and 12 and 13% for bitufted (n = 2) cells. (2) The preferential subcellular site which was contacted on PV-ir target cells was somatic for four and dendritic for five spiny cells; for basket cells, there was a somatic and for bitufted cells a dendritic preference in each examined case. (3) The highest number of contacts on a single PV-ir cell was 9 (4 somatic and 5 dendritic) for spiny neurons, 15 (10 somatic and 5 dendritic) for basket cells and 4 (1 somatic and 3 dendritic) for bitufted cells. These patterns suggest a cell type-dependent communication within layer IV microcircuits in which PV-ir interneurons provide not only feed-forward but also feedback inhibition thus triggering the thalamo-cortical response transformation

    Upregulation of Barrel GABAergic Neurons Is Associated with Cross-Modal Plasticity in Olfactory Deficit

    Get PDF
    Background: Loss of a sensory function is often followed by the hypersensitivity of other modalities in mammals, which secures them well-awareness to environmental changes. Cellular and molecular mechanisms underlying cross-modal sensory plasticity remain to be documented. Methodology/Principal Findings: Multidisciplinary approaches, such as electrophysiology, behavioral task and immunohistochemistry, were used to examine the involvement of specific types of neurons in cross-modal plasticity. We have established a mouse model that olfactory deficit leads to a whisking upregulation, and studied how GABAergic neurons are involved in this cross-modal plasticity. In the meantime of inducing whisker tactile hypersensitivity, the olfactory injury recruits more GABAergic neurons and their fine processes in the barrel cortex, as well as upregulates their capacity of encoding action potentials. The hyperpolarization driven by inhibitory inputs strengthens the encoding ability of their target cells. Conclusion/Significance: The upregulation of GABAergic neurons and the functional enhancement of neuronal networks may play an important role in cross-modal sensory plasticity. This finding provides the clues for developing therapeuti
    corecore