682 research outputs found

    Fate of Irgarol 1051, diuron and their main metabolites in two UK marine systems after restrictions in antifouling paints

    Get PDF
    Two major antifouling biocides used worldwide, Irgarol 1051 and diuron, and their degradation products in Shoreham Harbour and Brighton Marina, UK were studied during 2003-2004. The highest concentrations of Irgarol 1051 were 136 and 102 ng L(-1) in water and 40 and 49 ng g(-1) dry weight in sediments for Shoreham Harbour and Brighton Marina, respectively. As the degradation product of Irgarol 1051, M1 was also widespread, with the highest concentration of 59 ng L(-1) in water and 23 ng g(-1) in sediments in Shoreham Harbour, and 37 ng L(-1) in water and 5.6 ng g(-1) in sediments in Brighton Marina. The target compounds showed enhanced concentrations during the boating season (May-July), when boats were being re-painted (January-February), and where the density of pleasure crafts was high. Overall, the concentration of Irgarol 1051 decreased significantly from late 2000 to early 2004, indicating the effectiveness of controlling its concentrations in the marine environment following restricted use. Diuron was only detected in 14% of water samples, and mostly absent from sediment samples

    Microcalcifications Detection using PFCM and ANN

    Full text link
    This work presents a method to detect Microcalcifications in Regions of Interest from digitized mammograms. The method is based mainly on the combination of Image Processing, Pattern Recognition and Artificial Intelligence. The Top-Hat transform is a technique based on mathematical morphology operations that, in this work is used to perform contrast enhancement of microcalcifications in the region of interest. In order to find more or less homogeneous regions in the image, we apply a novel image sub-segmentation technique based on Possibilistic Fuzzy c-Means clustering algorithm. From the original region of interest we extract two window-based features, Mean and Deviation Standard, which will be used in a classifier based on a Artificial Neural Network in order to identify microcalcifications. Our results show that the proposed method is a good alternative in the stage of microcalcifications detection, because this stage is an important part of the early Breast Cancer detectio

    Breeding of endemic catfish, Horabagrus brachysoma in captive conditions

    Get PDF
    Asian seabass or barramundi (Lates calcarifer) is an important food fish with commercial value and a wide geographic distribution. Though some reports based on molecular and/or morphological data exist, a comprehensive effort to establish species identity across its range is lacking. In order to address this issue and especially to ascertain whether the wide-spread distribution has resulted in bifurcation of the species, we collected Asian seabass samples from various locations representing the Western and Eastern Coastline of India, Andaman and Nicobar Islands, Bangladesh and Australia. Samples from Malaysia, Indonesia, Thailand and Singapore were collected as part of a previous study. DNA sequence variations, including cytochrome c oxidase subunit 1 (COI), 16S rDNA and the highly variable D-loop (or control region), were examined to establish species delineation. Data from all the sequences analyzed concordantly point to the existence of at least two distinct species—one representing the Indian subcontinent plus Myanmar, and a second, representing Southeast Asia (Singapore, Malaysia, Thailand and Indonesia) plus Northern Australia. These data are useful for conservation ecology, aquaculture management, for establishing the extent of genetic diversity in the Asian seabass and implementing selective breeding programs for members of this species complex

    The performance of concrete exposed to marine environments: predictive modelling and use of laboratory/on site test method

    Get PDF
    This paper reports an approach by which laboratory based testing and numerical modelling can be combined to predict the long term performance of a range of concretes exposed to marine environments. Firstly, a critical review of the test methods for assessing the chloride penetration resistance of concrete is given. The repeatability of the different test results is also included. In addition to the test methods, a numerical simulation model is used to explore the test data further to obtain long-term chloride ingress trends. The combined use of testing and modelling is validated with the help of long-term chloride ingress data from a North Sea exposure site. In summary, the paper outlines a methodology for determining the long term performance of concrete in marine environments

    Mitochondrial ATPase 6/8 genes to infer the population genetic structure of silver pomfret fish Pampus argenteus along the Indian waters

    Get PDF
    Silver pomfret, Pampus argenteus is an economically important seafood species. The fishery resource of pomfret in Indian waters shows a dwindling catch since the last few years and the pomfrets caught were mostly undersized which calls for immediate attempts for management of resources. An accurate definition of population structure is important for management of this species. The genetic stock structure of P. argenteus distributed along Indian coast was identified using analysis of 842 bp of complete ATPase 6/8 genes of mitochondrial DNA. Altogether, 83 silver pomfret (P. argenteus) collected from 4 locations along Indian coast (Gujarat, Kerala, Tamil Nadu and West Bengal) were sequenced. Twenty four haplotypes were identified among 83 individuals with haplotype diversity (0.87) and nucleotide diversity (0.0025). The significant pair-wise FST and AMOVA values, between samples from West Bengal (east coast) and other locations along the west coast (Gujarat and Kerala) indicated the occurrence of distinct population structure in silver pomfret along the coast

    Appearance of Flat Bands and Edge States in Boron-Carbon-Nitride Nanoribbons

    Full text link
    Presence of flat bands and edge states at the Fermi level in graphene nanoribbons with zigzag edges is one of the most interesting and attracting properties of nanocarbon materials but it is believed that they are quite fragile states and disappear when B and N atoms are doped at around the edges. In this paper, we theoretically investigate electronic and magnetic properties of boron-carbon-nitride (BCN) nanoribbons with zigzag edges where the outermost C atoms on the edges are alternately replaced with B and N atoms using the first principles calculations. We show that BCN nanoribbons have the flat bands and edge states at the Fermi level in both H_2 rich and poor environments. The flat bands are similar to those at graphene nanoribbons with zigzag edges, but the distributions of charge and spin densities are different between them. A tight binding model and the Hubbard model analysis show that the difference in the distribution of charge and spin densities is caused by the different site energies of B and N atoms compared with C atoms.Comment: 5 pages; 3 figure

    Methodology for Designing Structures to Withstand Extreme Environments: Performance Based Specifications

    Get PDF
    Existing guidelines in BS 8500 allow the selection of concrete mix based on variables such as compressive strength, maximum water to binder ratio, minimum cement content and minimum cover thickness. This approach does not guarantee the durability and expected performance of the concrete structure in a given environment. One alternative is to develop performance- based specifications that supplement the existing guidelines in BS 8500, by specifying the required performance of concrete in terms of measurable properties such as resistance to environmental penetrations. This paper demonstrates one of such methodology for developing performance-based specifications for concretes exposed to marine environments. Chloride ingress related durability problem being critical in a marine environment, the reliability and repeatability of the different test methods for assessing the rate of chloride ingress is discussed first. Furthermore, a numerical simulation model is used to explore the test data to obtain long-term chloride ingress trends. Based on this, guidelines for selecting appropriate concrete mixes for a marine exposure is presented and discussed

    Effects of temperature and curing duration on the stability of slag cements in combined chloride-sulphate environments

    Get PDF
    This experimental study investigates the effects of temperature and curing duration on the stability of slag blended cement systems exposed at 20 °C and 38 °C to combined sodium chloride (30 g/L)-sodium sulphate (3 g/L) solutions. Two slags, designated as slag 1 and 2, having CaO/SiO2 ratios of 1.05 and 0.94, were respectively blended with Portland cement CEM I 52.5R at 30 wt.% replacement level. Mortar prisms and cubes with w/b ratio of 0.5 and binder/aggregate ratio of 1:3 were then prepared for length and mass changes. The samples were cured in lime water for either 7 or 28 days before ponding for a total exposure period of 544 days. Analogous paste samples were also prepared to follow changes in the hydration products using X-ray diffraction (XRD). The results showed that curing at 38°C resulted in less expansion and prolonged curing generally reduced expansion except for slag 1 blend at 20 °C. Also, mass-change was minimal at 38 °C compared to 20 °C, and curing up to 28 days further improved mass stability. There was a positive correlation between mass change and length change for the period of investigation

    Nucleation and condensational growth to CCN sizes during a sustained pristine biogenic SOA event in a forested mountain valley

    Get PDF
    The Whistler Aerosol and Cloud Study (WACS 2010), included intensive measurements of trace gases and particles at two sites on Whistler Mountain. Between 6–11 July 2010 there was a sustained high-pressure system over the region with cloud-free conditions and the highest temperatures of the study. During this period, the organic aerosol concentrations rose from <1 μg m<sup>−3</sup> to ∼6 μg m<sup>−3</sup>. Precursor gas and aerosol composition measurements show that these organics were almost entirely of secondary biogenic nature. Throughout 6–11 July, the anthropogenic influence was minimal with sulfate concentrations <0.2 μg m<sup>−3</sup> and SO<sub>2</sub> mixing ratios ≈ 0.05–0.1 ppbv. Thus, this case provides excellent conditions to probe the role of biogenic secondary organic aerosol in aerosol microphysics. Although SO<sub>2</sub> mixing ratios were relatively low, box-model simulations show that nucleation and growth may be modeled accurately if <i>J</i><sub>nuc</sub> = 3 × 10<sup>−7</sup>[H<sub>2</sub>SO<sub>4</sub>] and the organics are treated as effectively non-volatile. Due to the low condensation sink and the fast condensation rate of organics, the nucleated particles grew rapidly (2–5 nm h<sup>−1</sup>) with a 10–25% probability of growing to CCN sizes (100 nm) in the first two days as opposed to being scavenged by coagulation with larger particles. The nucleated particles were observed to grow to ∼200 nm after three days. Comparisons of size-distribution with CCN data show that particle hygroscopicity (κ) was ∼0.1 for particles larger 150 nm, but for smaller particles near 100 nm the κ value decreased near midway through the period from 0.17 to less than 0.06. In this environment of little anthropogenic influence and low SO<sub>2</sub>, the rapid growth rates of the regionally nucleated particles – due to condensation of biogenic SOA – results in an unusually high efficiency of conversion of the nucleated particles to CCN. Consequently, despite the low SO<sub>2</sub>, nucleation/growth appear to be the dominant source of particle number
    corecore