24 research outputs found

    The Quintuplet Cluster III. Hertzsprung-Russell diagram and cluster age

    Full text link
    The Quintuplet, one of three massive stellar clusters in the Galactic center, is located about 30pc in projection from Sagittarius A*. Based on near-infrared K-band spectra we determine temperatures and luminosities for all stars in our sample and construct the Herztsprung-Russell diagram. We find two distinct groups: early-type OB stars and late-type KM stars, well separated from each other. By comparison with Geneva stellar evolution models we derive initial masses exceeding 8 solar masses for the OB stars, that are located along an isochrone corresponding to a cluster age of about 4 million years. In addition, we derive number ratios (e. g. N_WR/N_O) and compare them with predictions of population synthesis models. We find that an instantaneous burst of star formation at about 3.3 to 3.6\,Myr ago is the most likely scenario to form the Quintuplet cluster. The late-type stars in the sample are red giant branch (RGB) stars or red supergiants (RSGs) according to their spectral signatures. It is discussed if they could physically belong to the Quintuplet cluster. Furthermore, we apply a mass-luminosity relation to construct the initial mass function (IMF) of the cluster. We find indications for a slightly top-heavy IMF.Comment: 10 pages, 9 figures, 2 tables, accepted for publication in A&

    New Wolf-Rayet star and its circumstellar nebula in Aquila

    Full text link
    We report the discovery of a new Wolf-Rayet star in Aquila via detection of its circumstellar nebula (reminiscent of ring nebulae associated with late WN stars) using the Spitzer Space Telescope archival data. Our spectroscopic follow-up of the central point source associated with the nebula showed that it is a WN7h star (we named it WR121b). We analyzed the spectrum of WR121b by using the Potsdam Wolf-Rayet (PoWR) model atmospheres, obtaining a stellar temperature of ~ 50 kK. The stellar wind composition is dominated by helium with ~ 20 per cent of hydrogen. The stellar spectrum is highly reddened (E_{B-V} = 2.85 mag). Adopting an absolute magnitude of M_v = -5.7, the star has a luminosity of log L/Lsun = 5.75 and a mass-loss rate of 10^{-4.7} Msun/yr, and resides in a distance of 6.3 kpc. We searched for a possible parent cluster of WR121b and found that this star is located at ~ 1 degree from the young star cluster embedded in the giant HII region W43 (containing a WN7+a/OB? star -- WR121a). We also discovered a bow shock around the O9.5III star ALS9956, located at ~ 0.5 degree from the cluster. We discuss the possibility that WR121b and ALS9956 are runaway stars ejected from the cluster in W43.Comment: 9 pages, 7 figures, accepted to MNRA

    Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas

    Full text link
    We study relatively isolated massive WN-type stars in the Galactic center. The K-band spectra of WR102ka and WR102c are exploited to infer the stellar parameters and to compute synthetic stellar spectra using the Potsdam Wolf-Rayet (PoWR) model atmosphere code. These models are combined with dust-shell models for analyzing the Spitzer IRS spectra of these objects. Archival IR images complement the interpretation. We report that WR102ka and WR102c are among the most luminous stars in the Milky Way. The mid-IR continua for both objects are dominated by dust emission. For the first time we report the presence of dust in the close vicinity of WN stars. Also for the first time, we have detected lines of pure-rotational transitions of molecular hydrogen in a massive-star nebula. A peony-shaped nebula around 102ka is resolved by the Spitzer MIPS camera. We attribute the formation of this nebula to the recent evolutionary history of WR102ka.Comment: accepted to A&A, see NASA/Spitzer Press Release at http://www.spitzer.caltech.edu/Media/releases/ssc2008-1
    corecore