891 research outputs found

    Evaluation of remote sensing techniques on selected forest sites in Florida

    Get PDF
    There are no author-identified significant results in this report

    Pratiques et politiques scientifiques

    Get PDF

    Chiral Symmetry Breaking in QCD: A Variational Approach

    Get PDF
    We develop a "variational mass" expansion approach, recently introduced in the Gross--Neveu model, to evaluate some of the order parameters of chiral symmetry breakdown in QCD. The method relies on a reorganization of the usual perturbation theory with the addition of an "arbitrary quark mass mm, whose non-perturbative behaviour is inferred partly from renormalization group properties, and from analytic continuation in mm properties. The resulting ansatz can be optimized, and in the chiral limit m0m \to 0 we estimate the dynamical contribution to the "constituent" masses of the light quarks Mu,d,sM_{u,d,s}; the pion decay constant FπF_\pi and the quark condensate <qˉq>< \bar q q >.Comment: 10 pages, no figures, LaTe

    Optimized Perturbation Theory for Wave Functions of Quantum Systems

    Full text link
    The notion of the optimized perturbation, which has been successfully applied to energy eigenvalues, is generalized to treat wave functions of quantum systems. The key ingredient is to construct an envelope of a set of perturbative wave functions. This leads to a condition similar to that obtained from the principle of minimal sensitivity. Applications of the method to quantum anharmonic oscillator and the double well potential show that uniformly valid wave functions with correct asymptotic behavior are obtained in the first-order optimized perturbation even for strong couplings.Comment: 11 pages, RevTeX, three ps figure

    Variational solution of the Gross-Neveu model; 2, finite-N and renormalization

    Get PDF
    We show how to perform systematically improvable variational calculations in the O(2N) Gross-Neveu model for generic N, in such a way that all infinities usually plaguing such calculations are accounted for in a way compatible with the renormalization group. The final point is a general framework for the calculation of non-perturbative quantities like condensates, masses, etc..., in an asymptotically free field theory. For the Gross-Neveu model, the numerical results obtained from a "two-loop" variational calculation are in very good agreement with exact quantities down to low values of N

    How are "teaching the teachers" courses in evidence based medicine evaluated? A systematic review

    Get PDF
    Background Teaching of evidence-based medicine (EBM) has become widespread in medical education. Teaching the teachers (TTT) courses address the increased teaching demand and the need to improve effectiveness of EBM teaching. We conducted a systematic review of assessment tools for EBM TTT courses. To summarise and appraise existing assessment methods for teaching the teachers courses in EBM by a systematic review. Methods We searched PubMed, BioMed, EmBase, Cochrane and Eric databases without language restrictions and included articles that assessed its participants. Study selection and data extraction were conducted independently by two reviewers. Results Of 1230 potentially relevant studies, five papers met the selection criteria. There were no specific assessment tools for evaluating effectiveness of EBM TTT courses. Some of the material available might be useful in initiating the development of such an assessment tool. Conclusion There is a need for the development of educationally sound assessment tools for teaching the teachers courses in EBM, without which it would be impossible to ascertain if such courses have the desired effect

    Light quarks masses and condensates in QCD

    Get PDF
    We review some theoretical and phenomenological aspects of the scenario in which the spontaneous breaking of chiral symmetry is not triggered by a formation of a large condensate . Emphasis is put on the resulting pattern of light quark masses, on the constraints arising from QCD sum rules and on forthcoming experimental tests.Comment: 23 pages, 12 Postscript figures, LaTeX, uses svcon2e.sty, to be published in the Proceedings of the Workshop on Chiral Dynamics 1997, Mainz, Germany, Sept. 1-5, 199

    A new method for the solution of the Schrodinger equation

    Full text link
    We present a new method for the solution of the Schrodinger equation applicable to problems of non-perturbative nature. The method works by identifying three different scales in the problem, which then are treated independently: An asymptotic scale, which depends uniquely on the form of the potential at large distances; an intermediate scale, still characterized by an exponential decay of the wave function and, finally, a short distance scale, in which the wave function is sizable. The key feature of our method is the introduction of an arbitrary parameter in the last two scales, which is then used to optimize a perturbative expansion in a suitable parameter. We apply the method to the quantum anharmonic oscillator and find excellent results.Comment: 4 pages, 4 figures, RevTex

    (Borel) convergence of the variationally improved mass expansion and the O(N) Gross-Neveu model mass gap

    Full text link
    We reconsider in some detail a construction allowing (Borel) convergence of an alternative perturbative expansion, for specific physical quantities of asymptotically free models. The usual perturbative expansions (with an explicit mass dependence) are transmuted into expansions in 1/F, where F1/g(m)F \sim 1/g(m) for mΛm \gg \Lambda while F(m/Λ)αF \sim (m/\Lambda)^\alpha for m \lsim \Lambda, Λ\Lambda being the basic scale and α\alpha given by renormalization group coefficients. (Borel) convergence holds in a range of FF which corresponds to reach unambiguously the strong coupling infrared regime near m0m\to 0, which can define certain "non-perturbative" quantities, such as the mass gap, from a resummation of this alternative expansion. Convergence properties can be further improved, when combined with δ\delta expansion (variationally improved perturbation) methods. We illustrate these results by re-evaluating, from purely perturbative informations, the O(N) Gross-Neveu model mass gap, known for arbitrary NN from exact S matrix results. Comparing different levels of approximations that can be defined within our framework, we find reasonable agreement with the exact result.Comment: 33 pp., RevTeX4, 6 eps figures. Minor typos, notation and wording corrections, 2 references added. To appear in Phys. Rev.

    Higher Order Evaluation of the Critical Temperature for Interacting Homogeneous Dilute Bose Gases

    Get PDF
    We use the nonperturbative linear \delta expansion method to evaluate analytically the coefficients c_1 and c_2^{\prime \prime} which appear in the expansion for the transition temperature for a dilute, homogeneous, three dimensional Bose gas given by T_c= T_0 \{1 + c_1 a n^{1/3} + [ c_2^{\prime} \ln(a n^{1/3}) +c_2^{\prime \prime} ] a^2 n^{2/3} + {\cal O} (a^3 n)\}, where T_0 is the result for an ideal gas, a is the s-wave scattering length and n is the number density. In a previous work the same method has been used to evaluate c_1 to order-\delta^2 with the result c_1= 3.06. Here, we push the calculation to the next two orders obtaining c_1=2.45 at order-\delta^3 and c_1=1.48 at order-\delta^4. Analysing the topology of the graphs involved we discuss how our results relate to other nonperturbative analytical methods such as the self-consistent resummation and the 1/N approximations. At the same orders we obtain c_2^{\prime\prime}=101.4, c_2^{\prime \prime}=98.2 and c_2^{\prime \prime}=82.9. Our analytical results seem to support the recent Monte Carlo estimates c_1=1.32 \pm 0.02 and c_2^{\prime \prime}= 75.7 \pm 0.4.Comment: 29 pages, 3 eps figures. Minor changes, one reference added. Version in press Physical Review A (2002
    corecore