240 research outputs found

    Population structure of Araucaria angustifolia in the Iguaçu National Park.

    Get PDF
    Estrutura populacional de Araucaria angustifolia no Parque Nacional do Iguaçu. O objetivo do presente trabalho foi analisar a estrutura populacional, regeneração e distribuição espacial de Araucaria angustifolia (Bertol.) Kuntz no interior de uma floresta natural e na borda de uma floresta com monocultura agrícola. Todos os indivíduos de araucária a partir de 10 cm de altura foram registrados em 200 parcelas de 10 x 10 m, sendo amostrados 479 indivíduos (416 na borda e 63 no interior). Desses, 33 eram fêmeas, 37 machos, 49 juvenis e 360 regenerantes. A estrutura da população apresentou padrão semelhante ao J-invertido. Os indivíduos regenerantes apresentaram principalmente o padrão agregado de distribuição, já para os juvenis, machos e fêmeas o padrão foi uniforme. A densidade do dossel influenciou a frequência de indivíduos, sendo observadas maiores frequências em maiores densidades, indicando que a regeneração da espécie é mais efetiva em ambientes sombreados. Devido ao grande número de indivíduos amostrados em diferentes classes de tamanho, o Parque Nacional do Iguaçu representa um importante remanescente na conservação de A. angustifolia

    Diabetes Causes Bone Marrow Autonomic Neuropathy and Impairs Stem Cell Mobilization via Dysregulated p66Shc and Sirt1

    Get PDF
    Diabetes compromises the bone marrow (BM) microenvironment and reduces circulating CD34 + cells. Diabetic autonomic neuropathy (DAN) may impact the BM, because the sympathetic nervous system (SNS) is prominently involved in BM stem cell trafficking. We hypothesize that neuropathy of the BM affects stem cell mobilization and vascular recovery after ischemia in diabetes. We report that, in patients, cardiovascular DAN was associated with fewer circulating CD34 + cells. Experimental diabetes (STZ and Ob/Ob ) or chemical sympathectomy in mice resulted in BM autonomic neuropathy, impaired Lin - cKit + Sca1 + (LKS) cell and endothelial progenitor cells (EPC, CD34 + Flk1 + ) mobilization and vascular recovery after ischemia. DAN increased expression of p66Shc and reduced expression of Sirt1 in mice and humans. p66Shc KO in diabetic mice prevented DAN in the BM, and rescued defective LKS cell and EPC mobilization. Hematopoietic Sirt1 KO mimicked the diabetic mobilization defect, while hematopoietic Sirt1 overexpression in diabetes rescued defective mobilization and vascular repair. Through p66Shc and Sirt1 , diabetes and sympathectomy elevated the expression of various adhesion molecules, including CD62L . CD62L KO partially rescued the defective stem/progenitor cell mobilization. In conclusion, autonomic neuropathy in the BM impairs stem cell mobilization in diabetes with dysregulation of the lifespan regulators p66Shc and Sirt1

    Changes Induced by Exposure of the Human Lung to Glass Fiber–Reinforced Plastic

    Get PDF
    The inhalation of glass dusts mixed in resin, generally known as glass fiber–reinforced plastic (GRP), represents a little-studied occupational hazard. The few studies performed have highlighted nonspecific lung disorders in animals and in humans. In the present study we evaluated the alteration of the respiratory system and the pathogenic mechanisms causing the changes in a group of working men employed in different GRP processing operations and exposed to production dusts. The study was conducted on a sample of 29 male subjects whose mean age was 37 years and mean length of service 11 years. All of the subjects were submitted to a clinical check-up, basic tests, and bronchoalveolar lavage (BAL); microscopic studies and biochemical analysis were performed on the BAL fluid. Tests of respiratory function showed a large number of obstructive syndromes; scanning electron microscopy highlighted qualitative and quantitative alterations of the alveolar macrophages; and transmission electron microscopy revealed the presence of electron-dense cytoplasmatic inclusions indicating intense and active phlogosis (external inflammation). Biochemical analyses highlighted an increase in protein content associated with alterations of the lung oxidant/antioxidant homeostasis. Inhalation of GRP, independent of environmental concentration, causes alterations of the cellular and humoral components of pulmonary interstitium; these alterations are identified microscopically as acute alveolitis

    Serum oxidative stress-induced repression of Nrf2 and GSH depletion: a mechanism potentially involved in endothelial dysfunction of young smokers

    Get PDF
    AbstractBackground: Although oxidative stress plays a major role in endothelial dysfunction (ED), the role of glutathione (GSH), ofnuclear erythroid-related factor 2 (Nrf2) and of related antioxidant genes (ARE) are yet unknown. In this study we combined an in vivo with an in vitro model to assess whether cigarette smoking affects flow-mediated vasodilation (FMD), GSHconcentrations and the Nrf2/ARE pathway in human umbilical vein endothelial cells (HUVECs).Methods and Results: 52 healthy subjects (26 non-smokers and 26 heavy smokers) were enrolled in this study. In smokerswe demonstrated increased oxidative stress, i.e., reduced concentrations of GSH and increased concentrations of oxidationproducts of the phospholipid 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (oxPAPC) in serum and inperipheral blood mononuclear cells (PBMC), used as in vivo surrogates of endothelial cells. Moreover we showedimpairment of FMD in smokers and a positive correlation with the concentration of GSH in PBMC of all subjects. In HUVECsexposed to smokers\u2019 serum but not to non-smokers\u2019 serum we found that oxidative stress increased, whereas nitric oxideand GSH concentrations decreased; interestingly the expression of Nrf2, of heme oxygenase-1 (HO-1) and of glutamatecysteineligase catalytic (GCLC) subunit, the rate-limiting step of synthesis of GSH, was decreased. To test the hypothesisthat the increased oxidative stress in smokers may have a causal role in the repression of Nrf2/ARE pathway, we exposedHUVECs to increasing concentrations of oxPAPC and found that at the highest concentration (similar to that found insmokers\u2019 serum) the expression of Nrf2/ARE pathway was reduced. The knockdown of Nrf2 was associated to a significantreduction of HO-1 and GCLC expression induced by oxPAPC in ECs.Conclusions: In young smokers with ED a novel further consequence of increased oxidative stress is a repression of Nrf2/ARE pathway leading to GSH depletion

    The Peritoneum as a Natural Scaffold for Vascular Regeneration

    Get PDF
    Objective: The peritoneum has the same developmental origin as blood vessels, is highly reactive and poorly thrombogenic. We hypothesize that parietal peritoneum can sustain development and regeneration of new vessels. Methods and Results: The study comprised two experimental approaches. First, to test surgical feasibility and efficacy of the peritoneal vascular autograft, we set up an autologous transplantation procedure in pigs, where a tubularized parietal peritoneal graft was covered with a metal mesh and anastomosed end-to-end in the infrarenal aorta. Second, to dissect the contribution of graft vs host cells to the newly developed vessel wall, we performed human-to-rat peritoneal patch grafting in the abdominal aorta and examined the origin of endothelial and smooth muscle cells. In pig experiments, the graft remodeled to an apparently normal blood vessel, without thrombosis. Histology confirmed arterialization of the graft with complete endothelial coverage and neointimal hyperplasia in the absence of erosion, inflammation or thrombosis. In rats, immunostaining for human mitochondri revealed that endothelial cells and smooth muscle cells rarely were of human origin. Remodeling of the graft was mainly attributable to local cells with no clear evidence of c-kit+ endothelial progenitor cells or c-kit+ resident perivascular progenitor cells. Conclusions: The parietal peritoneum can be feasibly used as a scaffold to sustain the regeneration of blood vessels, whic

    The Redox Enzyme p66Shc Contributes to Diabetes and Ischemia-Induced Delay in Cutaneous Wound Healing

    Get PDF
    OBJECTIVE: The redox enzyme p66Shc produces hydrogen peroxide and triggers proapoptotic signals. Genetic deletion of p66Shc prolongs life span and protects against oxidative stress. In the present study, we evaluated the role of p66Shc in an animal model of diabetic wound healing. RESEARCH DESIGN AND METHODS: Skin wounds were created in wild-type (WT) and p66Shc(-/-) control and streptozotocin-induced diabetic mice with or without hind limb ischemia. Wounds were assessed for collagen content, thickness and vascularity of granulation tissue, apoptosis, reepithelialization, and expression of c-myc and beta-catenin. Response to hind limb ischemia was also evaluated. RESULTS: Diabetes delayed wound healing in WT mice with reduced granulation tissue thickness and vascularity, increased apoptosis, epithelial expression of c-myc, and nuclear localization of beta-catenin. These nonhealing features were worsened by hind limb ischemia. Diabetes induced p66Shc expression and activation; wound healing was significantly faster in p66Shc(-/-) than in WT diabetic mice, with or without hind limb ischemia, at 1 and 3 months of diabetes duration and in both SV129 and C57BL/6 genetic backgrounds. Deletion of p66Shc reversed nonhealing features, with increased collagen content and granulation tissue thickness, and reduced apoptosis and expression of c-myc and beta-catenin. p66Shc deletion improved response to hind limb ischemia in diabetic mice in terms of tissue damage, capillary density, and perfusion. Migration of p66Shc(-/-) dermal fibroblasts in vitro was significantly faster than WT fibroblasts under both high glucose and hypoxia. CONCLUSIONS: p66Shc is involved in the delayed wound-healing process in the setting of diabetes and ischemia. Thus, p66Shc may represent a potential therapeutic target against this disabling diabetes complication
    corecore