27 research outputs found
Optimization of extracranial stereotactic radiation therapy of small lung lesions using accurate dose calculation algorithms
BACKGROUND: The aim of this study was to compare and to validate different dose calculation algorithms for the use in radiation therapy of small lung lesions and to optimize the treatment planning using accurate dose calculation algorithms. METHODS: A 9-field conformal treatment plan was generated on an inhomogeneous phantom with lung mimics and a soft tissue equivalent insert, mimicking a lung tumor. The dose distribution was calculated with the Pencil Beam and Collapsed Cone algorithms implemented in Masterplan (Nucletron) and the Monte Carlo system XVMC and validated using Gafchromic EBT films. Differences in dose distribution were evaluated. The plans were then optimized by adding segments to the outer shell of the target in order to increase the dose near the interface to the lung. RESULTS: The Pencil Beam algorithm overestimated the dose by up to 15% compared to the measurements. Collapsed Cone and Monte Carlo predicted the dose more accurately with a maximum difference of -8% and -3% respectively compared to the film. Plan optimization by adding small segments to the peripheral parts of the target, creating a 2-step fluence modulation, allowed to increase target coverage and homogeneity as compared to the uncorrected 9 field plan. CONCLUSION: The use of forward 2-step fluence modulation in radiotherapy of small lung lesions allows the improvement of tumor coverage and dose homogeneity as compared to non-modulated treatment plans and may thus help to increase the local tumor control probability. While the Collapsed Cone algorithm is closer to measurements than the Pencil Beam algorithm, both algorithms are limited at tissue/lung interfaces, leaving Monte-Carlo the most accurate algorithm for dose prediction
Consistent Pattern of Local Adaptation during an Experimental Heat Wave in a Pipefish-Trematode Host-Parasite System
Extreme climate events such as heat waves are expected to increase in frequency under global change. As one indirect effect, they can alter magnitude and direction of species interactions, for example those between hosts and parasites. We simulated a summer heat wave to investigate how a changing environment affects the interaction between the broad-nosed pipefish (Syngnathus typhle) as a host and its digenean trematode parasite (Cryptocotyle lingua). In a fully reciprocal laboratory infection experiment, pipefish from three different coastal locations were exposed to sympatric and allopatric trematode cercariae. In order to examine whether an extreme climatic event disrupts patterns of locally adapted host-parasite combinations we measured the parasite's transmission success as well as the host's adaptive and innate immune defence under control and heat wave conditions. Independent of temperature, sympatric cercariae were always more successful than allopatric ones, indicating that parasites are locally adapted to their hosts. Hosts suffered from heat stress as suggested by fewer cells of the adaptive immune system (lymphocytes) compared to the same groups that were kept at 18°C. However, the proportion of the innate immune cells (monocytes) was higher in the 18°C water. Contrary to our expectations, no interaction between host immune defence, parasite infectivity and temperature stress were found, nor did the pattern of local adaptation change due to increased water temperature. Thus, in this host-parasite interaction, the sympatric parasite keeps ahead of the coevolutionary dynamics across sites, even under increasing temperatures as expected under marine global warming
The role of complex cues in social and reproductive plasticity
Phenotypic plasticity can be a key determinant of fitness. The degree to which the expression of plasticity is adaptive relies upon the accuracy with which information about the state of the environment is integrated. This step might be particularly beneficial when environments, e.g. the social and sexual context, change rapidly. Fluctuating temporal dynamics could increase the difficulty of determining the appropriate level of expression of a plastic response. In this review, we suggest that new insights into plastic responses to the social and sexual environment (social and reproductive plasticity) may be gained by examining the role of complex cues (those comprising multiple, distinct sensory components). Such cues can enable individuals to more accurately monitor their environment in order to respond adaptively to it across the whole life course. We briefly review the hypotheses for the evolution of complex cues and then adapt these ideas to the context of social and sexual plasticity. We propose that the ability to perceive complex cues can facilitate plasticity, increase the associated fitness benefits and decrease the risk of costly ‘mismatches’ between phenotype and environment by (i) increasing the robustness of information gained from highly variable environments, (ii) fine-tuning responses by using multiple strands of information and (iii) reducing time lags in adaptive responses. We conclude by outlining areas for future research that will help to determine the interplay between complex cues and plasticity
Variations of lung density and geometry on inhomogeneity correction algorithms: a Monte Carlo dosimetric evaluation.
This work contributed the following new information to the study of inhomogeneity correction algorithm: (1) Evaluation of lung dose calculation methods as a function of lung relative electron density (rhoe,lung) and treatment geometry and (2) comparison of doses calculated using the collapsed cone convolution (CCC) and adaptive convolution (AC) in lung using the Monte Carlo (MC) simulation with the EGSnrc-based code. The variations of rhoe,lung and geometry such as the position and dimension of the lung were studied with different photon beam energies and field sizes. Three groups of inhomogeneous lung phantoms, namely, slab, column, and cube, with different positions, volumes, and shapes of lung in water as well as clinical computed tomography lung images were used. The rhoe,lung in each group of phantoms vary from 0.05 to 0.7. 6 and 18 MV photon beams with small (4 x 4 cm2) and medium (10 x 10 cm2) field sizes produced by a Varian 21 EX linear accelerator were used. This study reveals that doses in the inhomogeneous lung calculated by the CCC match well with those by AC within +/- 1%, indicating that the AC, with an advantage of shorter computing times (three to four times shorter than CCC), is a good substitute for CCC. Comparing the CCC and AC to MC in general, significant dose deviations are found when the rhoe,lung is \u3c or =0.3. The degree of deviation depends on the photon beam energy and field size and is relatively large when high-energy photon beams with small fields are used. For penumbra widths (20%-80%), the CCC and AC agree well with MC for the slab and cube phantoms with the lung volumes at the central beam axis (CAX). However, deviations (\u3e2 mm) occur in the column phantoms, with two lung volumes separated by a unit density column along the CAX in the middle using the 18 MV beam with 4 x 4 cm2 field for rhoe,lung \u3c or =0.1. This study provides new dosimetric data to evaluate the impact of the variations of rhoe,lung and geometry on dose calculations in inhomogeneous media using CCC and AC
Breeding cycles and reproductive behaviour in the river blenny Salaria fluviatillis.
Female gravidity (assessed according to the roundness of the female’s abdomen) in a population of Corsican river blennies Salaria fluviatilis showed a cyclical pattern over the breeding season. Behavioural interactions between males and females matched these cycles. The rate of female visits to males’ territories did not differ between periods of high and low daily average gravidity in the population. While males courted a similar proportion of females in both periods, they rejected a higher proportion of females when daily average gravidity was high. Furthermore female courtship of males was observed at this time, whereas it never occurred during low daily average gravidity periods. Thus, temporal variation in female availability for spawning caused both males and females to alter their behaviour in such a way that a sex role reversal in courtship was observed
A comparison of Monte Carlo and analytic first scatter dose spread arrays
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder