659 research outputs found

    The value of the use of a personality or social adjustment inventory in the selection of candidates for physical therapy training

    Full text link
    Thesis (Ed.M.)--Boston University, 1947. This item was digitized by the Internet Archive

    Fluid-structure interaction and homogenization: from spatial averaging to continuous wavelet transform

    Get PDF
    Fluid-structure interaction (FSI) is classicaly modeled according a separated and local approach. It enables to take full advantage of the numerical methods specifically designed for each medium. However, it requires to take great care of the interface, and to exchange, between the algorithms, the information related to boundary conditions [1]. This treatment of the interface can quickly become too cumbersome in complex flow geometries, as in the industrial case study driving this work: an inviscid compressible flow interacting with French PWR fuel assemblies (Fig. 1a). In such specific applications, where the solid medium exhibits a discontinuous but periodic design, an homogenized and global approach is preferred [2]. Inspired by porous media [3, 4], multiphase flows, or Large Eddy Simulation (LES), it relies on a spatial averaging of the balance equations, thus allowing to remove all interfaces. However, such filtering techniques exhibit two major limitations: first, they do not deal properly with boundary conditions, due to the non-commutativity between the filtering operator and spatial derivatives, as detailed in [5, 6, 7] for LES; second, filtering implies loss of microscopic information, and thus requires a closure model to describe interactions between resolved and unresolved scales

    Mitigating ammonia and greenhouse gas emissions from stored pig slurry using chemical additives and biochars

    Get PDF
    : Slurry storage is a significant source of NH3 and greenhouse gas (GHG) emissions. The aim of this laboratory study was to assess the effects of different chemical additives and biochars on the emissions of NH3 , N2O, CO2 , and CH4 during the short-term storage of pig slurry. The experiment was performed using Kilner jars filled with raw slurry as control and six treatment additives (5% w/w): acidified slurry, alkalinized slurry, neutralized slurry, agroforestry biochar, cardoon biochar, and elderberry biochar. The gas emissions were measured for 30 days, and the composition of the slurries was determined. During short-term storage, the results of this laboratory study indicated that the NH3 emissions were reduced by 58% by acidification and by 20% by the biochars (Agroforestry, Cardoon, and Elderberry treatments), while neutralization reduced this loss by only 12%. Nitrous oxide emissions were not reduced by the chemical additives (Acidified, Alkalinized, and Neutralized treatments), while this loss was increased by 12% by the biochars. Carbon dioxide, CH4 , and global warming potential emissions were not affected by the chemical additives and biochars. Furthermore, the absence of differences between the biochars may be related to their similar composition. Regarding the influence of the studied additives on NH3 losses, it can be concluded that acidification was the best mitigation measure and the biochars were quite similar due to their composition. Furthermore, neutralization had the advantage of sanitizing the slurry, but only had a mild impact on NH3 preservationinfo:eu-repo/semantics/publishedVersio

    The Phylogeography of Rabies in Grenada, West Indies, and Implications for Control

    Get PDF
    In Grenada, West Indies, rabies is endemic, and is thought to be maintained in a wildlife host, the small Indian mongoose (Herpestes auropunctatus) with occasional spillover into other hosts. Therefore, the present study was undertaken to improve understanding of rabies epidemiology in Grenada and to inform rabies control policy. Mongooses were trapped island-wide between April 2011 and March 2013 and examined for the presence of Rabies virus (RABV) antigen using the direct fluorescent antibody test (dFAT) and PCR, and for serum neutralizing antibodies (SNA) using the fluorescent antibody virus neutralization test (FAVN). An additional cohort of brain samples from clinical rabies suspects submitted between April 2011 and March 2014 were also investigated for the presence of virus. Two of the 171 (1.7%) live-trapped mongooses were RABV positive by FAT and PCR, and 20 (11.7%) had SNAs. Rabies was diagnosed in 31 of the submitted animals with suspicious clinical signs: 16 mongooses, 12 dogs, 2 cats and 1 goat. Our investigation has revealed that rabies infection spread from the northeast to the southwest of Grenada within the study period. Phylogenetic analysis revealed that the viruses from Grenada formed a monophyletic clade within the cosmopolitan lineage with a common ancestor predicted to have occurred recently (6–23 years ago), and are distinct from those found in Cuba and Puerto Rico, where mongoose rabies is also endemic. These data suggest that it is likely that this specific strain of RABV was imported from European regions rather than the Americas. These data contribute essential information for any potential rabies control program in Grenada and demonstrate the importance of a sound evidence base for planning interventions

    Development of a cost-effective media for biosurfactants production by Pseudomonas aeruginosa

    Get PDF
    In the last years, the textile industry has shown a growing interest in biosurfactants due to their biocompatibility , biodegradability , and versatility at various pH and temperature ranges . These compounds have found applications as softeners, wetting agents, lubricants, foam stabilizers, and even in the scouring of wool. This study aims to develop an economically efficient medium for biosurfactant production by Pseudomonas aeruginosa #112. Firstly , waste cooking oils after treatment (WCOT), a residue rich in lipids, was evaluated as an inducer of biosurfactants production . Different concentrations of these substrates (1, 2.5, 5, and 10 % w/v) were tested, and glucose was used as a carbon source. In the experiments with 1 % of WCOT it was observed a significant (p 0.05) reduction in the surface tension from 48.4 mN/m to 34.8 mN/m, suggesting the biosurfactant production . Furthermore , rice husk (RH) and vine pruning (VP) residues were identified as alternative carbon sources for biosurfactants production, when combined with WCOT . Both residues are rich in cellulose, which can be broken down into free glucose. An enzymatic pre- treatment that combines xylanase and cellulase was used to hydrolyze residues and release free glucose . The obtained results demonstrate that the combination of 1 % OUAT with hydrolyzed RH or VP resulted in a substantial (53 %) reduction in surface tension. At the end of the fermentation, 1.65 g/L and 0.26 g/L of biosurfactant were recovered for the experiments with hydrolyzed PV and RH, respectively. Additionally, the critical micelle dilution results demonstrate that the two tested media allow biosurfactant production and effective reduction of the surface tension of distilled water , even at low concentrations . This is the first report of biosurfactant production using a mixture of these three agro-industrial residues , which can be very useful for the sustainable production of these promising molecules.The authors acknowledge the financial support from integrated project be@t – Textile Bioeconomy (TCC12-i01, Sustainable Bioeconomy No. 02/C12-i01/2022), promoted by the Recovery and Resilience Plan (RRP), Next Generation EU, for the period 2021 – 2026. The authors also acknowledge the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit.info:eu-repo/semantics/publishedVersio

    Modification of PET surfaces with Gum Arabic towards its bacterial anti-adhesiveness using an experimental factorial design approach

    Get PDF
    Bacterial adhesion onto hospital material surfaces still represents a big healthcare issue, being preventive measures required to mitigate this problem, such as increasing material surface hydrophilicity. In the present study, gum Arabic, a hydrophilic polysaccharide, was used to modify the surface of polyethylene terephthalate (PET). Initial water contact angle (WCA) and WCA after several washing cycles were studied as response variables by a 24 full factorial design. Several reaction parameters, such as contact time between gum Arabic and PET, gum Arabic concentration, curing temperature and curing time for PET modification were investigated. The most significant parameters were found to be the curing temperature and curing time. The optimized parameters led to a WCA reduction from 70° to 27°. The modified PET samples were characterized using several techniques including AFM, colorimetric, ATR-FTIR and contact angle which further confirmed a successful surface modification. Furthermore, bacterial adhesion assays have clearly shown that the treated PET material was highly effective in preventing the bacterial adhesion of Escherichia coli expressing YadA, an adhesive protein from Yersinia so-called Yersinia adhesin. The use of design of experiments techniques allowed for successfully attaining a PET material with a high bacterial anti-adhesiveness, using a simple grafting approach.This work was supported by the ViBrANT project that received funding from the EU Horizon 2020 Research and Innovation Programme under the Marie Sklowdowska-Curie, Grant agreement no 765042 and the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020.info:eu-repo/semantics/publishedVersio

    Atmospheric plasma and UV polymerisation for developing sustainable anti-adhesive polyethylene terephthalate (PET) surfaces

    Get PDF
    Enhancing the hydrophilicity of polymeric materials is an important step for achieving anti-adhesiveness. Thus, in this study, atmospheric plasma as a pre-treatment was combined with a UV grafting process to obtain a durable surface modification on polyethylene terephthalate (PET). The most promising conditions for the atmospheric plasma process were found to be 15 kW power and 4 m/min speed, leading to a contact angle reduction from 70 ± 6° to approximately 30°. However, it was observed that these values increased over time due to the ageing and washing of the PET surface, ultimately causing it to recover its initial contact angle. Therefore, the plasma-pre-treated PET samples were further modified through a UV grafting process using sodium acrylate (NaAc) and 3-sulfopropyl acrylate potassium salts (KAc). The grafted acrylate PET samples exhibited contact angles of 8 ± 3° and 28 ± 13° for NaAc and KAc, respectively, while showing durability in ageing and washing tests. The dry film thicknesses for both samples were found to be 28 ± 2 μm. Finally, the anti-adhesive properties of the NaAc- and KAc-treated surfaces were evaluated using an Escherichia coli expressing YadA, an adhesive protein from Yersinia. The modified PET surfaces were highly effective in reducing bacterial adhesion by more than 90%.This work was supported by the ViBrANT project, which received funding from the EU Horizon 2020 Research and Innovation Programme under Marie Sklowdowska-Curie (grant agreement no. 765042), and the Portuguese Foundation for Science and Technology (FCT) (grant number UIDB/04469/2020).info:eu-repo/semantics/publishedVersio
    corecore