4,263 research outputs found
The impact of Stellar feedback from velocity-dependent ionised gas maps. -- A MUSE view of Haro 11
We have used the capability of the MUSE instrument to explore the impact of
stellar feedback at large scales in Haro 11, a galaxy under extreme starburst
condition and one of the first galaxies where Lyman continuum (LyC) has been
detected. Using Ha, [OIII] and [OI] emission lines from deep MUSE observations,
we have constructed a sequence of velocity-dependent maps of the Ha emission,
the state of the ionised gas and a tracer of fast shocks. These allowed us to
investigate the ionisation structure of the galaxy in 50 kms^2 bins over a
velocity range of -400 to 350 kms. The ionised gas in Haro 11 is assembled by a
rich arrangement of structures, such as superbubbles, filaments, arcs and
galactic ionised channels, whose appearances change drastically with velocity.
The central star forming knots and the star forming dusty arm are the main
engines that power the strong mechanical feedback in this galaxy, although with
different impact on the ionisation structure. Haro 11 appears to leak LyC
radiation in many directions. We found evidence of a kpc-scale fragmented
superbubble, that may have cleared galactic-scale channels in the ISM.
Additionally, the southwestern hemisphere is highly ionised in all velocities,
hinting at a density bound scenario. A compact kpc-scale structure of lowly
ionised gas coincides with the diffuse Lya emission and the presence of fast
shocks. Finally, we find evidence that a significant fraction of the ionised
gas mass may escape the gravitational potential of the galaxy.Comment: Pubisched version. Ionisation values were corrected after discovering
a bug in a code used to generate the map
Optical Properties of (SrMnO3)n/(LaMnO3)2n superlattices: an insulator-to-metal transition observed in the absence of disorder
We measure the optical conductivity of (SrMnO3)n/(LaMnO3)2n superlattices
(SL) for n=1,3,5, and 8 and 10 < T < 400 K. Data show a T-dependent insulator
to metal transition (IMT) for n \leq 3, driven by the softening of a polaronic
mid-infrared band. At n = 5 that softening is incomplete, while at the
largest-period n=8 compound the MIR band is independent of T and the SL remains
insulating. One can thus first observe the IMT in a manganite system in the
absence of the disorder due to chemical doping. Unsuccessful reconstruction of
the SL optical properties from those of the original bulk materials suggests
that (SrMnO3)n/(LaMnO3)2n heterostructures give rise to a novel electronic
state.Comment: Published Online in Nano Letters, November 8, 2010;
http://pubs.acs.org/doi/abs/10.1021/nl1022628; 5 pages, 3 figure
Experimental evidence of antiproton reflection by a solid surface
We report here experimental evidence of the reflection of a large fraction of
a beam of low energy antiprotons by an aluminum wall. This derives from the
analysis of a set of annihilations of antiprotons that come to rest in rarefied
helium gas after hitting the end wall of the apparatus. A Monte Carlo
simulation of the antiproton path in aluminum indicates that the observed
reflection occurs primarily via a multiple Rutherford-style scattering on Al
nuclei, at least in the energy range 1-10 keV where the phenomenon is most
visible in the analyzed data. These results contradict the common belief
according to which the interactions between matter and antimatter are dominated
by the reciprocally destructive phenomenon of annihilation.Comment: 5 pages with 5 figure
Membrane-Based, Liquid–Liquid Separator with Integrated Pressure Control
We describe the development and application of an improved, membrane-based, liquid–liquid separator. Membrane-based separation relies on the exploitation of surface forces and the use of a membrane wetted by one of the phases; however, successful separation requires accurate control of pressures, making the operation and implementation cumbersome. Here we present an improved separator design that integrates a pressure control element to ensure that adequate operating conditions are always maintained. Additionally, the integrated pressure control decouples the separator from downstream unit operations. A detailed examination of the controlling physical equations shows how to design the device to allow operation across a wide range of conditions. Easy to implement, multistage separations such as solvent swaps and countercurrent extractions are demonstrated. The presented design significantly simplifies applications ranging from multistep synthesis to complex multistage separations.Novartis-MIT Center for Continuous ManufacturingUnited States. Defense Advanced Research Projects Agency (Grant N66001-11-C-4147
Correlation functions, null polygonal Wilson loops, and local operators
We consider the ratio of the correlation function of n+1 local operators over
the correlator of the first n of these operators in planar N=4 super-Yang-Mills
theory, and consider the limit where the first n operators become pairwise null
separated. By studying the problem in twistor space, we prove that this is
equivalent to the correlator of a n-cusp null polygonal Wilson loop with the
remaining operator in general position, normalized by the expectation value of
the Wilson loop itself, as recently conjectured by Alday, Buchbinder and
Tseytlin. Twistor methods also provide a BCFW-like recursion relation for such
correlators. Finally, we study the natural extension where n operators become
pairwise null separated with k operators in general position. As an example, we
perform an analysis of the resulting correlator for k=2 and discuss some of the
difficulties associated to fixing the correlator completely in the strong
coupling regime.Comment: 34 pages, 6 figures. v2: typos corrected and references added; v3:
published versio
Evidence for Environmentally Dependent Cluster Disruption in M83
Using multi-wavelength imaging from the Wide Field Camera 3 on the Hubble
Space Telescope we study the stellar cluster populations of two adjacent fields
in the nearby face-on spiral galaxy, M83. The observations cover the galactic
centre and reach out to ~6 kpc, thereby spanning a large range of environmental
conditions, ideal for testing empirical laws of cluster disruption. The
clusters are selected by visual inspection to be centrally concentrated,
symmetric, and resolved on the images. We find that a large fraction of objects
detected by automated algorithms (e.g. SExtractor or Daofind) are not clusters,
but rather are associations. These are likely to disperse into the field on
timescales of tens of Myr due to their lower stellar densities and not due to
gas expulsion (i.e. they were never gravitationally bound). We split the sample
into two discrete fields (inner and outer regions of the galaxy) and search for
evidence of environmentally dependent cluster disruption. Colour-colour
diagrams of the clusters, when compared to simple stellar population models,
already indicate that a much larger fraction of the clusters in the outer field
are older by tens of Myr than in the inner field. This impression is quantified
by estimating each cluster's properties (age, mass, and extinction) and
comparing the age/mass distributions between the two fields. Our results are
inconsistent with "universal" age and mass distributions of clusters, and
instead show that the ambient environment strongly affects the observed
populations.Comment: 6 pages, 3 figures, MNRAS in pres
A Comprehensive Comparative Test of Seven Widely-Used Spectral Synthesis Models Against Multi-Band Photometry of Young Massive Star Clusters
We test the predictions of spectral synthesis models based on seven different
massive-star prescriptions against Legacy ExtraGalactic UV Survey (LEGUS)
observations of eight young massive clusters in two local galaxies, NGC 1566
and NGC 5253, chosen because predictions of all seven models are available at
the published galactic metallicities. The high angular resolution, extensive
cluster inventory and full near-ultraviolet to near-infrared photometric
coverage make the LEGUS dataset excellent for this study. We account for both
stellar and nebular emission in the models and try two different prescriptions
for attenuation by dust. From Bayesian fits of model libraries to the
observations, we find remarkably low dispersion in the median E(B-V) (~0.03
mag), stellar masses (~10^4 M_\odot) and ages (~1 Myr) derived for individual
clusters using different models, although maximum discrepancies in these
quantities can reach 0.09 mag and factors of 2.8 and 2.5, respectively. This is
for ranges in median properties of 0.05-0.54 mag, 1.8-10x10^4 M_\odot and
1.6-40 Myr spanned by the clusters in our sample. In terms of best fit, the
observations are slightly better reproduced by models with interacting binaries
and least well reproduced by models with single rotating stars. Our study
provides a first quantitative estimate of the accuracies and uncertainties of
the most recent spectral synthesis models of young stellar populations,
demonstrates the good progress of models in fitting high-quality observations,
and highlights the needs for a larger cluster sample and more extensive tests
of the model parameter space.Comment: Accepted for publication in MNRAS (14 Jan. 2016). 30 pages, 16
figures, 9 table
Noninflammatory Changes of Microglia Are Sufficient to Cause Epilepsy.
Microglia are well known to play a critical role in maintaining brain homeostasis. However, their role in epileptogenesis has yet to be determined. Here, we demonstrate that elevated mTOR signaling in mouse microglia leads to phenotypic changes, including an amoeboid-like morphology, increased proliferation, and robust phagocytosis activity, but without a significant induction of pro-inflammatory cytokines. We further provide evidence that these noninflammatory changes in microglia disrupt homeostasis of the CNS, leading to reduced synapse density, marked microglial infiltration into hippocampal pyramidal layers, moderate neuronal degeneration, and massive proliferation of astrocytes. Moreover, the mice thus affected develop severe early-onset spontaneous recurrent seizures (SRSs). Therefore, we have revealed an epileptogenic mechanism that is independent of the microglial inflammatory response. Our data suggest that microglia could be an opportune target for epilepsy prevention
Twistors, Harmonics and Holomorphic Chern-Simons
We show that the off-shell N=3 action of N=4 super Yang-Mills can be written
as a holomorphic Chern-Simons action whose Dolbeault operator is constructed
from a complex-real (CR) structure of harmonic space. We also show that the
local space-time operators can be written as a Penrose transform on the coset
SU(3)/(U(1) \times U(1)). We observe a strong similarity to ambitwistor space
constructions.Comment: 34 pages, 3 figures, v2: replaced with published version, v3: Added
referenc
Evolution of magnetic phases and orbital occupation in (SrMnO3)n/(LaMnO3)2n superlattices
The magnetic and electronic modifications induced at the interfaces in
(SrMnO)/(LaMnO) superlattices have been investigated
by linear and circular magnetic dichroism in the Mn L x-ray absorption
spectra. Together with theoretical calculations, our data demonstrate that the
charge redistribution across interfaces favors in-plane ferromagnetic (FM)
order and orbital occupation, in agreement with the
average strain. Far from interfaces, inside LaMnO, electron localization
and local strain favor antiferromagnetism (AFM) and
orbital occupation. For the high density of interfacial planes ultimately
leads to dominant FM order forcing the residual AFM phase to be in-plane too,
while for the FM layers are separated by AFM regions having
out-of-plane spin orientation.Comment: accepted for publication as a Rapid Communication in Physical Review
- …
