1,141 research outputs found

    Tracking system study

    Get PDF
    A digital computer program was generated which mathematically describes an optimal estimator-controller technique as applied to the control of antenna tracking systems used by NASA. Simulation studies utilizing this program were conducted using the IBM 360/91 computer. The basic ideas of applying optimal estimator-controller techniques to antenna tracking systems are discussed. A survey of existing tracking methods is given along with shortcomings and inherent errors. It is explained how these errors can be considerably reduced if optimal estimation and control are used. The modified programs generated in this project are described and the simulation results are summarized. The new algorithms for direct synthesis and stabilization of the systems including nonlinearities, are presented

    Fast-ignition design transport studies: realistic electron source, integrated PIC-hydrodynamics, imposed magnetic fields

    Full text link
    Transport modeling of idealized, cone-guided fast ignition targets indicates the severe challenge posed by fast-electron source divergence. The hybrid particle-in-cell [PIC] code Zuma is run in tandem with the radiation-hydrodynamics code Hydra to model fast-electron propagation, fuel heating, and thermonuclear burn. The fast electron source is based on a 3D explicit-PIC laser-plasma simulation with the PSC code. This shows a quasi two-temperature energy spectrum, and a divergent angle spectrum (average velocity-space polar angle of 52 degrees). Transport simulations with the PIC-based divergence do not ignite for > 1 MJ of fast-electron energy, for a modest 70 micron standoff distance from fast-electron injection to the dense fuel. However, artificially collimating the source gives an ignition energy of 132 kJ. To mitigate the divergence, we consider imposed axial magnetic fields. Uniform fields ~50 MG are sufficient to recover the artificially collimated ignition energy. Experiments at the Omega laser facility have generated fields of this magnitude by imploding a capsule in seed fields of 50-100 kG. Such imploded fields are however more compressed in the transport region than in the laser absorption region. When fast electrons encounter increasing field strength, magnetic mirroring can reflect a substantial fraction of them and reduce coupling to the fuel. A hollow magnetic pipe, which peaks at a finite radius, is presented as one field configuration which circumvents mirroring.Comment: 16 pages, 17 figures, submitted to Phys. Plasma

    Influence of home and school environments on specific dietary behaviors among postpartum, high-risk teens, 27 states, 2007-2009

    Get PDF
    INTRODUCTION: The objective of this study was to determine whether perceptions of the home and school food environments are related to food and beverage intakes of postpartum teens. METHODS: Our study was a baseline, cross-sectional analysis of 853 postpartum teens enrolled in a weight-loss intervention study across 27 states from 2007 through 2009. Eight-item scales assessed perceived accessibility and availability of foods and beverages in school and home environments. Associations between environments and intakes were assessed by using χ(2) and using logistic regression with generalized estimating equations (GEE), respectively. RESULTS: Overall, 52% of teens perceived their school food environment as positive, and 68% of teens perceived their home food environment as positive. A positive school environment was independently associated with fruit consumption and 100% fruit juice consumption. A positive home environment was independently associated with fruit, vegetable, and water consumption and infrequent consumption of soda and chips (χ(2) P < .05). Having only a positive school environment was associated with fruit consumption (GEE odds ratio [OR], 3.1; 95% confidence interval [CI], 1.5–6.5), and having only a positive home environment was associated with fruit (GEE OR, 2.9; 95% CI, 1.6–5.6), vegetable (GEE OR, 3.1; 95% CI, 1.5–6.2), and water (GEE OR, 2.6; 95% CI, 1.7–4.0) consumption and infrequent consumption of soda (GEE OR, 0.5; 95% CI, 0.3–0.7). Results for positive home and school environments were similar to those for positive home only. CONCLUSION: Home and school environments are related to dietary behaviors among postpartum teens, with a positive home environment more strongly associated with healthful behaviors

    Impact of Type 2 diabetes prevention programmes based on risk identification and lifestyle intervention intensity strategies: a cost-effectiveness analysis

    Get PDF
    Aim To develop a cost-effectiveness model to compare Type 2 diabetes prevention programmes that target different at-risk population subgroups through lifestyle interventions of varying intensity. Methods An individual patient simulation model simulated the development of diabetes in a representative sample of adults without diabetes from the UK population. The model incorporates trajectories for HbA1c, 2-h glucose, fasting plasma glucose, BMI, systolic blood pressure, total cholesterol and HDL cholesterol. In the model, patients can be diagnosed with diabetes, cardiovascular disease, microvascular complications of diabetes, cancer, osteoarthritis and depression, or can die. The model collects costs and utilities over a lifetime horizon. The perspective is the UK National Health Service and Personal Social Services. We used the model to evaluate the population-wide impact of targeting a lifestyle intervention of varying intensity to six population subgroups defined as at high risk for diabetes. Results The intervention produces 0.0020 to 0.0026 incremental quality-adjusted life-years and saves £15 to £23 per person in the general population, depending on the subgroup targeted. Cost-effectiveness increases with intervention intensity. The most cost-effective options were to target South-Asian people and those with HbA1c levels > 42 mmol/mol (6%). Conclusion The model indicates that diabetes prevention interventions are likely to be cost-saving. The criteria for selecting at-risk individuals differentially has an impact on diabetes and cardiovascular disease outcomes, and on the timing of costs and benefits. The model is not currently able to account for potential differential uptake or efficacy between subgroups. These findings have implications for deciding who should be targeted for diabetes prevention interventions.NIH

    SPHR Diabetes Prevention Model: Detailed Description of Model Background, Methods, Assumptions and Parameters

    Get PDF
    Type-2 diabetes is a complex disease with multiple risk factors and health consequences whose prevention is a major public health priority. We have developed a microsimulation model written in the R programming language that can evaluate the effectiveness and cost-effectiveness of a comprehensive range of different diabetes prevention interventions, either in the general population or in subgroups at high risk of diabetes. Within the model individual patients with different risk factors for diabetes follow metabolic trajectories (for body mass index, cholesterol, systolic blood pressure and glycaemia), develop diabetes, complications of diabetes and related disorders including cardiovascular disease and cancer, and eventually die. Lifetime costs and quality-adjusted life-years are collected for each patient. The model allows assessment of the wider social impact on employment and the equity impact of different interventions. Interventions may be population-based, community-based or individually targeted, and administered singly or layered together. The model is fully enabled for probabilistic sensitivity analysis (PSA) to provide an estimate of decision uncertainty. This discussion paper provides a detailed description of the model background, methods and assumptions, together with details of all parameters used in the model, their sources and distributions for PSA

    Energy spectra of the ocean's internal wave field: theory and observations

    Full text link
    The high-frequency limit of the Garrett and Munk spectrum of internal waves in the ocean and the observed deviations from it are shown to form a pattern consistent with the predictions of wave turbulence theory. In particular, the high frequency limit of the Garrett and Munk spectrum constitutes an {\it exact} steady state solution of the corresponding kinetic equation.Comment: 4 pages, one color figur

    Multi-filament structures in relativistic self-focusing

    Get PDF
    A simple model is derived to prove the multi-filament structure of relativistic self-focusing with ultra-intense lasers. Exact analytical solutions describing the transverse structure of waveguide channels with electron cavitation, for which both the relativistic and ponderomotive nonlinearities are taken into account, are presented.Comment: 21 pages, 12 figures, submitted to Physical Review

    Electromagnetic energy penetration in the self-induced transparency regime of relativistic laser-plasma interactions

    Get PDF
    Two scenarios for the penetration of relativistically intense laser radiation into an overdense plasma, accessible by self-induced transparency, are presented. For supercritical densities less than 1.5 times the critical one, penetration of laser energy occurs by soliton-like structures moving into the plasma. At higher background densities laser light penetrates over a finite length only, that increases with the incident intensity. In this regime plasma-field structures represent alternating electron layers separated by about half a wavelength by depleted regions.Comment: 9 pages, 4 figures, submitted for publication to PR

    Cone-Guided Fast Ignition with no Imposed Magnetic Fields

    Full text link
    Simulations of ignition-scale fast ignition targets have been performed with the new integrated Zuma-Hydra PIC-hydrodynamic capability. We consider an idealized spherical DT fuel assembly with a carbon cone, and an artificially-collimated fast electron source. We study the role of E and B fields and the fast electron energy spectrum. For mono-energetic 1.5 MeV fast electrons, without E and B fields, the energy needed for ignition is E_f^{ig} = 30 kJ. This is about 3.5x the minimal deposited ignition energy of 8.7 kJ for our fuel density of 450 g/cm^3. Including E and B fields with the resistive Ohm's law E = \eta J_b gives E_f^{ig} = 20 kJ, while using the full Ohm's law gives E_f^{ig} > 40 kJ. This is due to magnetic self-guiding in the former case, and \nabla n \times \nabla T magnetic fields in the latter. Using a realistic, quasi two-temperature energy spectrum derived from PIC laser-plasma simulations increases E_f^{ig} to (102, 81, 162) kJ for (no E/B, E = \eta J_b, full Ohm's law). This stems from the electrons being too energetic to fully stop in the optimal hot spot depth.Comment: Minor revisions in response to referee comment
    • …
    corecore