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1., . introduction

The purpose of this project was to generate a digital
'computer‘program which mathematically describes an optimal
estimator-controller technique as applied to the control of
antenna tfacking systems used by NASA., Simulation studies
utilizing this program were to be'conducted“using the IBM

360/91 computer.

Previous work performed by Stanford Research Institute
(SRI) for NASA, ERC, Cambridge, Mass., served as a starting
point in this project. The program written by SRI was not
addressed to a real-life tracking system and it assumed the
sfstem to be linear. In this project, the optimal estimator- -
controller program was adopted for the 30 ft and 40 ft NASA
MSFN and  STADAN antenna tracking systems. Simulations in-
cluding the nonlinearities were performed and algorithms
for direct synthesis of the control signal, taking into
account the nonlinearities, were proposed. The results of

this study are summarized in this report.

~

The basic ideas of applying optimal estimator-con-
tfoller techniques to antenna tracking systems are discussed
in Chapter 2. A survey of existing tracking methods is given
along with shortcomings and inherent errors. It is explained
how these errors can be considerably reduced if optimal es-

timation and control are used.

The modified programs generated in this project are
described in,K Chapter 3, and the simulation results are sum-
marized in Chapter 4. The new algorithms for direct syn-

. thesis and stabilization of the systems including nonlin-
earities, are prescnted in Chapter 5. Conclusions are
given in Chapter 6. B T

isk "

R
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‘

The repoft includes four Appendices. Basic notions
of optimal recursive estimation are presented in Appendix A,
while the optimal control policy used in this project is
outlined in Appendix B. Appendix C constitutes a detailed
documentation of the optimal estimation-control program
RATS generated in this project. Various reference angle
coordinate representations are given in Appendix D.



2. The Application of Optimal-Control

Theory tc Space Vehicle Tracking

2.1 Introduction

The basic reason for considering the application
of optimum stochastic control to a tracking antenna system
is the possibility of achieving some measure of dynamically
minimized pointing error. Thus the object is to realize
optimum pointing estimates in real time as opposed to their
determination through post-flight analysis. Such critical
real-time tracking support may be necessary during mannea
flight missions where, for example, extremely accurate
coverage of a rendevous and docking maneuver is required.
Also, for systems exhibiting very narrow beam widths
(such as laser ranging devices), precise pointing may be
necessary to maintain lock-on.

In general, the degign of an optimal controller
begins with a precise definition of both input signal
and plant dynamics. In stochastic applications, the
state must be estimated from measurements made at various
points within the combined systems. Once these estimates
are obtained, they become input to a control law, the
purpose of which is to mlnlmlze some (average) measure
of (in this case) anienna pointing error.

A detailed discussion of the mathematical theory
of optimum control 1is beyond the scope of this report;
however, a great body of literaturc exists on this sub-
ject for reference, and a few pertinent sources are listed
in Section 2.6. The next section (2.2) contains a brief,
general description of the theory as applied to the sys-



tem studied under ‘this contract, while in Section 2.3,
the tracking system itself is discussed. In Section 2.4
major errors inherent in the overall dynamical system are
discussed, and in Section 2.5 an example is given of how
certain errors are formulated mathematically in the es-

. timator/controliler model.*

"% This inclusion of this formulation in the simulation
program was beyond the scope of this effort, and is
included mainly to indicate one direction for future
work, :

..2-2‘



2.2 The Optimization Problem

Figure 2.1 is a simplifieé block diagram of the
tracking problem considered in this study. The "input
signal'" is described by means of a set of non-linear
"differential equations which define the trajectory of
the space vehicle. The instanteneous trajectory state
is then transformed into a set of "observables" to which
the tracking system responds (for example, a typical
set of observables is comprised of two orthogonal pointing
angles with respect to an antenna datum, plus measurements

»

of range and/or range-rate). j

In this study, the observables which drive the
antenna system are angluar offsets from the "mechanical"
boresight (which is, in this simple model, assumed to
correspond to the RF-boresight). This displacement is
sensed in a set of error detectors which generate appro-
priate electronic signali which in turn drive the an-

tenna system back into a null error situation.

~

The optimization problem is to find a controller
which, given appropriate knowledge of the state of the
entire system, will maintain a minimum average value of
squared pointing error 'e'.

In general, however, although the input ;ignal
dynamics may be known fairly well, the '"first order"
stochastic problem requires that the initial conditions
be estimated from the measurements themselves. In
addition, other components of the composite state vector
may not be known a priori, so that they must also be
estimated. Thus, the more‘general "'stochastic optimum"
contrcl problem requires consideration of a method for

state_estimation.*

* See References 2 and 4 for a more detailed, mathematical
discussion of the stochastic optimum control problem.

2-3
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Although a detailed discussion of these added
.uncéftainities is beyond the scope of this effort, some
examples are given in Section 2.4 as an aid for future
‘study. First, however, a more complete description of
hoﬁ the present-day tracking systems operéte is pre-

. sented to set the basis for the simulations described in
‘Chapter 4. There are two basic modes of operation:
"autotrack" and '"program'". A detailed description of

the observables (i.e., "X and Y angles') is included in
Appendix D.

i



2.3 Antenna System Operating Modes

3

2.3.1 The "Autotrack Mode' of Operation

The "Autotrack Mode" constitutes a closed loop
automatic control operation of the antenna tracking
system, It is most widely used in actual tracking
operations. A block diagram is sketched in Figure 2.2,

In this case, the difference between the RF or
Boresight axis of the antenna and the actual line of
sight to the satellite is measured; and the reading
constitutes the error signal in the feedback loop. The
control action tries to minimize this error. Although
there is a certain amount of feedback involved in this
operation, the information fed back to the control sys-
tem is still incomplete. For instance, no information
concerning the actual and predicted trajecto}y of the
satellite is being,transmitted. With respect to the
trajectory information, the autotrack system could be
regarded -as an "open loop'" system, although, technically
it does have a closed loop.

2-6



X - CHANNEL

“ SERVO POWER
AMPLIFIER [ o7 DRIVE —>
RECEIVER ANTENNA
' SERVO POWER
B ampLIFIER [P DRIVE &>
Y - CHANNEL

[RF-AXIS (OR: BORESIGHT AXiS)] — [ACTUAL LINE OF SIGHT]

Fig. 2.2 Autotrack Mode Operation

COMPARATOR

SERVO ‘ 5 POWER ; ANTENNA

TAPE
ERRO AMPLIFIER DRIVE
- SIGNAL
@ .
PREPROGRAMMED
X ;Y VS. TIME -2
INFORMATION - . SAME LOOP
FOR THE Y
ENCODER

CHANNEL

Fig. 2.3° Program Mode Operation



1

2.3.2 The Progfam Mode of Operation

The basic principle of this Program Mode operation
of an antenna tracking system is illustrated in Figure 2.3.
The trajectory of the satellite as well as the precise
“location of the tracking station are assumed known. Using
this information one may pre-calculate the values of the
X, Y angles as functions of time for the whole tracking
period. This information is stored on tape and fed to
the comparator at the output of which appears the error
signal. This error signal drives the antenna in the

direction of minimizing this error.

- i
The main disadvantage of this method is the fact
that the whole control action is accomplished without
. any knowledge of the actual position of the satellite.
It may happen that the satellite's trajectory may become
displaced for some reason, and in this mode, the tracking
system may not "know'" anything about it. Although there
~is a closed loop in the block diagram, this mode of opera-
tion is basically sopen-loop from the control systems
standpoint, since there is no feedback signal which rep-
resents the actually controlled entity.. In this mode of
operation it is easy to wind up with a situation where
the satellite is at one place and the antenna is pointing
to another.

-



2.4 Examples of Errors in the "Autotrack" System

The autotrack system is plagued by a set of errors
inherent in the system's operation. Some possible errors
-can be introduced as schematically sketched in Figure 2.4.
For the sake of simplicity, only, one channel is shown
in the figure.

The typical errors existing at various stages of
the operation of the autotrack system are the following:

1'61.‘ ray -path errors, which may-include ;
(a) Error due to refraction of transmitted

signal pafhs in the atmosphere.

(b) Errors resulting from imprecise knowl-

edge of station location.

(c) Timing &rrors. (Station relative to
orbit) -
\\\
Z.e2 - errors resulting from receiver noise, for instance:
polarization shift error.
3.e3 - dynamic -errors of the feedback control

system, which may include

(a) Servo dynamic errors of the control systen,

(acceleration error, velocity error)

(b) Wind gust errors, (zenith structure shift,
direction cffect)

(c) Mechanical misalignments, {(deflection coefficient,
deflection angular effect, tilt, axis lack of
orthogonality)

2-9
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4.e4 - RF axis'tracking errors. [1]

(encoder and axis bias, encoder hysteresis)
In the usual autotrack system very little can be
done to alleviate the effect of these errors. On the
other hand, as indicated in the next section, by using
the .optimal estimator/controller idea, one may compute
an optimal estimate of these errors and hence account for

their presence in the design of the controller.

2.5  Estimation of Errors

By formulating the problem within the framework

of the optimum stochastic control, it is possible to
consider these errors and, 1in some cases, to either
remove their effects from the state variables used by
the optimum controller or include them in the actual

controller design.

»

The basic notion behind successful appliéation
of this idea is the notion of observability, that is,

whether or not, given all measurements up to and includ-

. ing a given time 't', the desired error sources are
observable in the sense that meaningful estimates of

their values can be obtainéd from these measurements.
Also, the degree of observability is important inasmuch

as those errors that can be estimated with smaller amounts
of data will tend to yield more optimum overall results

as far as fixed interval real time optimum control is
concerned. This question is, however, a complicated

one in general and will not be discussed further here¥;

* Some research into the arca of orbital state trajectory,
estimation in the presence of unknown dynamic equation
and measurement ecrror$ has been. carried out by A. Dennis{5].
Application of the techniques developed should simplify the
general controller estimation problem and will be ex-
amined in future work.

2-11



rather, an example will be given of how a typical error
source might be contained within the estimator formulation.

To be specific, for the case of one quarter of the
prescribed bandwidth for the system under study, [3, Chapter

12], the transfer function of the plant is:

X(s) = __.125 - . (2-1
U(s) s(.5s+1) '

where ’ 4 - | |
X(s) = s-transform of the X angle.

s-transform of the forcing functions.

U(s)

The treatment will be confined to the X-channel only, since
the treatment of the Y-channel would be identical.

~Introducing the following state variables:

X (t) = X(t)

-

xz(t) 'il(t) A o

one obtains the following state equations:

e
i
1
[N
5
+

.25u L (2-2)



or

X = Ax + bu R o (@3)
where
x ] 0 1] [0 ]
X = ’ A= 3 P_=
fz_ '_0 —2- h.ZS_

In practice, the state ‘variables of the system are
not directly observable. Moreover, as pointed out in
" Section 2.2, they are corrupted by a set of errors. The
errors could be represented as additional state variables
of the system. The way it is done, will be illustrated by
a specific example. .

One should start in this case from the state transi-
tion equation obtained from the state Eq. (2-2). This
would actually be the closed-form solution of these equa-
tions:

t, |
k-l) K-1) ¥ -\T)Eu(r)dT
Y1 o

: (2-4)

-
o



In this case:

1 F(1-e"2%y | |
eAt - (2-5)

0 e-Zt-

So, Eq. (2-4) becomes :

1 g 2t 1)y
x(t,) = x(t, ;) +
A g 13 - k-1
0 e 2 (Tt )
ty 125 [1-e 2(t Ty |
+ [ | udt ' (2-6)
; 25 ¢ 2(t ) :
k-1 L i
Or: ~
1 3 [1-e 200 By
x(t) | 7 | oxe ) ¢
0 e 1) |-
25t -ty o+ 2-e 2t to1)y)
' | ulty-y)
Caazsee o)



= ¢ (k,k-1) x (ti_l)'+ I' (k,k-1) u (tk_l) . (2-7)

This expression is similar to the one in Eq. (A-1), in
Appendix A. The same expression could be written for the
Y-Channel.

The errors to be considered, as an example, are the
bias and the tilt errors. They are expressed as follows:[1]

Bk',

'—*
i
(ad
tn
]

Bias Error at a constant

7 = Tk tgY¥sinX

1]
-+

Tilt error at t

The tilt error consists of a fixed coefficient Tk’ but the

measured result depends on X and Y.

Both Bk and Tk are unknown a priori and are to be
- estimated by the optimal estimation process. They are rep-
‘resented as additional stdte variables. The original state

vector is augmented as follows, to form a new state vector:

| x(y) ] [ X (0
. |
X =| B | e x5 () (2-8)
o B
R k )

2-15"°



Since Bk and, T, arec assumed time invariant, the augmented

k
state transition equation will be:

o(k,k-1) 0 r(k,k-1)
X = L gy (279)
0 I, 0
where
ue_q = oulty ) )
1 0
I =
2 1o 1
orxr.:
X = 0 (k1) X+ I (kke1) uy (2-10)

where the definition of ¢; and I'; is obvious from Eq. (2-9).
For the sake of simplicity, assume that there is no

extra noise on the state equation, of the antenna, i.e.,

we =0 S (2-11)

(see Eq. .(A-1) in Appendix A)

,’2"16(



Now one has to formulate the measurement equations.
Considering the X-channel only, it will be assumed that

the following entities are measurable:

1 X - Xs

2. Py

3 X .
where » ‘ . )
- le = predicted line of sight of the satellite for

the X-angle.

3.

p, = range from tracking station to the satellite.

Forgetting for the moment the errors, the measure-

ment equations will have®the follbwing form:

g_k‘ = H (k) y, * v o ' (2-12)

Y, = overall'state vector, -(including satellite and antenna) .
Same as Eq. (A-2), with all symbols defined identically.

In this case, n=8, m=3, so, H will be a 3x8 matrix,
(n=8, since there are 6 state variables for the satellite

equations and 2 for the X-channel of the antenna).

Let the overall state vector be defined as follows:

245



- - _
Zq Cartesian coordinates of the sat-
‘ ellite in tracking station cen-
Z, tered system. zy - zenith
z z, - east

3 .
. z3 - north
- 1 Cartesian velocity components

L 5 of the satellite.
2
23
X1
*2

L i

Details concerning the satellite-and measurements equations

may be found in references[2’4].

The overall augmented state vector will be:

Yy
Y, =B,
Ty

And the overall augmented state transition equations will
be of the form =

Yy

where ¢2 and FZ may be worked out as was clear before.

2-18
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The linearized méasurement matrix H, (k) in Eq. (2-12)

may be expressed as follows:

Hl(k) -

It was shown in

!.

X
S

o emm——

azl

Bps

le

83X
3z
ap
dz

1 0
0 O ) (2-14)
1 0

(2-15)

(2-16)

Taking into account the errors, the augmented

linearized measurement matrix will take the following

form:



| °E,  3E |1 tgYsinX
LBy 3Ty E
HOO = |00y N R ORI
, 9E) 3 E, :
;9B AT, {1 tg¥sinX

Applying the optimal estimation techniques to this
system, as described in Appendix A, one finds an optimal
gstimate of the overall state vector, at any time t = tyo
Yk' This ogtimgl estimate includes also the estimates of
Ehe errors Bk’ Tk' The overall estimated state vector
Yk’ is then applied as an input to the optimal controller.
(See Appendix B) The optimal controller produces a con-
trol signal which takes into account the whole state vec-

tor Yk’ including all the errors and which extremizes

the performance index. In this case, it would be minimiz-

ing the pointing error.

" 2.5.1 Discussion

~—

“The above simple example, as noted earlier, is pre-
sented only to indicate the usefulness of the formalism

of optimum stochastic control in handling realistic measure-
ment error sources. In the real world, although some mod-
ifications to the basic structures may be necesSary[S],

the overall effectiveness of these ideas can be retained.
This topic is not discussed further in this report, although
it is recommended that realistic systems be examined from

this viewpoint in future work.
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3. Estimation and Control Simulation Pfograms

3.1 Ihtroduction

Two programs served as a basis for the present
simulation studies:

(a).  ORBTRACK, [1,2].

This program simulates tﬁe autotrack and the opti-
mal estimator-controller modes of operation, of
an- optical tracking system for an interplanetary
mission. The basic theory underlying the program
" is described in reference [1], along with some
simulation results. The program documentation
is given in Reference [2]. This includes a gross
flowchart and subroutine and symbols vocabulary.
- The program was originally implemented on an IBM
7094 system. '

-

(b) RADIO ANTENNA, [3]. This program simulates the
optlmal estlmator controller mode of operation of
an~%ﬂ§§£ﬁg§§’radar tracking antenna, for a satellite
around the earth trajectory mission. The tracking
works on an elevation-azimuth reference basis.

Only the elevation channel was originally available

in the program. The theory relevant to the program

was described in reference [3], Chapter 7. No
..program documentation was available. The program

itself was not debugged to the end and was not in a

working condition. The program was originally written

for the IBM 7094.



Both programs, with the exception of a few sub-
routines.in Assembly Language, were written in
FORTRAN 1V.

In the current project, both programs were adopted
on the IBM 360/91 systems. Both programs were
equipped with optional graphical disblay facilities.
- The modified ORBTRACK program was renamed: ATRK30,
and the RADIO ANTENNA program: RATS. Both ATRK30
and RATS are written in FORTRAN IV, without any
subroutines in Assembly Language. The following
basic changes were made in the programs:

ATRK30
(1) Adoption of the IBM 360/91 system.

(2) Replacement of Assembly Language subroutines
with library subroutines called in FORTRAN 1IV.

(3) Addition of optional graphical display of
various functions as a function of time.

(4) Transformation into the X-Y angle reference
system. B

(5) -Replacement of the original optical tracking
system by a model of the GSFC 30 Ft. tracking
antenna. |

(6) Inclusion of options to perform simulations
with nonlinearities in the loop.

t3-2



RATS

(1)-(4) Same as in ATRK30.

(5

(6)

(7)

(8)

(9)

(10)

Replacement of the original imaginary antenna
tracking system by a model of the GSFC 40 Ft.

tracking antenna.

Inclusion of an additional angle channel
into the program. (Only one channel was

originally available).

Convergence in the state transition matrix

calculation was achieved. (There was a
divergence in the original program). Con-
vergence was achieved by implementing a

new method.

The previous matrix inversion routine, which
gave unaccept®ble results, was replaced by
aq\improved routine. Moreover, the total
nuﬁBer_of inversions to be performed, was
reduced. '

The input was modified to read directly the
system matrix A (See Eq; (2-3)) of the state

equations. -

Genecration of program documentation. More

details will be given further in the chapter.
Details concerning simulation runs performed,

will be given in Chapter 4.

W
1
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3.2 The ATRK30 Program

As mentioned before, the ATRK30 program is basically
the same as the ORBTRACK. The main difference is in the
plant configuration. It so appears, that both plants may
be represented by the following transfer function:

K
G(s) = ——— ‘ ' ’ (3-
s(s+a) _

The interchange between them is accomplished by changing
the values of K, a, which are_functions of input data.

‘ 1
K = -—
J
' fe
a = —
— J
J = nmoment of inertia of the system Input data of
f = friction coefficient of the system } the program,

It should be noted that Eq. (1) is a very simplified
representation of the antenna power system. However, it is
the one used in the original report concerning the 30 Ft.

antenna, [4].



The actual transfer function used in the simulation

was:

.25 <
G(s) = ——ro ‘ (3-2)
S(s+2)

This is the case of 1/4 of the total available
bandwidth, as specified in [4], Chapter 12.

There 1is a difference in the controller structure

- in autotrack mode. Iy the ORBTRACK program, for the
optical tracking system, the controller has the form:

C(s) = K, + K,s + — . (3-3)

This is the well known parallel combination of an ampli-
fier, differentiator and integrator. In the 30 Ft.

antenna system, the controller has the form: [4]

C(s) = — 7 - (3-4)

[}
—
[9a]

In this particular case of 1/4 BW: a = 12.5; b

3-5



3.3 The RATS Program

The basic theory underlying this program was
described in Reference [7]. This program underwent,
however, considerable changes in this project. No
previous programming documentation was available, so
this documentation will be given in this report. A gross
flow-chart of the program is shown in Figure 3.1. A
glossary of programming notation is given in Appendix C.
A list of the program's subroutines with a short descrip-
tion of the function of each as well as a list of all

input data is also given in Appendix C.

Description of the Program

The program is started by setting some initial
parameters which include the angular rate of rotation of
the earth, , earth's radius, Re’ and the earth gravita-

tional constant, TP

r

—~~ In subroutine TRAK1l the basic input data are read
in.. (See Appendix C for a detailed list). The radius
vector components from tracking station to the satellite
are calculated and the input data are printed out. The
initial direction angles X, Y are calculated in TZERO.

" (See Appendix D -for basic formulas on calculating X, Y.)
Subroutine FPHI reads in the data for the state

equations of the antenna, i.e., matrix A and vector b

from Eq. (2-3). This arrangement makes the program

_ flexible enough to be applied to various types of tracking

antennas, just by changing some input variables. The state

transition matrices of the system are computed. (See

Eq. (25) of [3].) |

3.6
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WRITE IHITIAL VALUES

v

TZERO Y

CALCULATE INITIAL
VALUES OF X,Y ANGLES
AND WRITE X,Y VALUES

PXAGBH

FIND PREDICTED POSITION-
VELOCITY. SET UPPER
LEFT PORTION OF PMI- .
MATRIX TO SATELLITE
TRANSITION MATRIX FOR
THIS TIME. '
CALCULATE PREDICTED

X,Y ANGLES, AND _

1 ESTIMATED OBSERVATION

VECTOR

FPHI

READ NAMELIST DYNMIC
WRITE NAMELIST DYNMIC
CALCULATE DISCRETE .
FORM OF TRANSITION MA- .
TRICES. WRITE DIS-
CRETE MATRICES SET
LOWER™RIGHT PORTION
OFngy-MATRIX

t

PKKM
CALCULATE COVARIANCE
OF ERROR IN ESTIMATE

2y 7
o

Y

TRAK2

IF NOT FIRST TIME GET -
ESTIMATED X,Y ANGLES
UPDATE ETA. AND CAL-
CULATE CONTROL. WRITE
TIME POINT DATA. GET
PLOT VECTORS AND IF
LAST POINT PLOT RESULTS
THEN STOP, :
CALCULATE MEASUREMENT
NOISE. UPDATE TRUE AND
ESTIMATED STATE VECTORS

HMAT

CALCULATE TERMS OF
H-MATRIX, THE JACOBIAN
MATRIX RELATING THE

OBSERVATIONS TO THE
STATE VARIABLES

%

WATE -

CALCULATE THE OBSERVA-
TION WEIGHING MATRIX.
IF OTHER THAN FIRST
TIME POINT THE INVER-
SION (36) [R+HPHT]-1
=C~-1 IS PERFORMED




NOTE:

ALKPKK

FORM RESIDUAL (OBSERVED)-
(COMPUTED) WRITE RE-
SIDUAL VECTOR. FORM

NEW ESTIMATED STATE VEC-
TOR. COMPUTE COVARI-
ANCE IN ESTIMATE

PCNTRL

ITERATE RICCATI EQUATION TO
FIND STEADY STATE SOLUTION.
START WITH APPROXIMATE
SOLUTICN = 1.

%

ECNTRL
CALCULATE CONSTANT
PORTION OF ETA (61)

%

PFEEH

CALCULATE ESTIMATED
X,Y ANGLES

TRAK3

CALCULATE AND WRITE FEED-
BACK COEFFICIENTS. CAL-

CULATE CONSTANT PORTIONS

OF (63).

Numbers in ( ) refer to formulas in reference [3], ch. 7
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In subroutine' TRAK2 the estimated X and Y angles
are used to update the variable of (Eq. (61) of [3]) and
to compute the optimal control, (Eq. (63) of [3]). Satellite
position is updated to current time. The predicted antenna
state is calculated (Eq. (32) of [3]), and the new overall
state vector is calculated, (Eq. (42) of [3]). The measure-
ment noise vector is also calculated in this subroutine,

using a pseudo-random number generator.

The actual X, Y angles of the antenna and the
actual measurement vector B, (Eq. (27) of [3]), are
calculated by subroutine AGBT. ‘

Subroutine PXAGBH, called by AGBT, (which in turn
" is called by TRAK2), calculates the predicted satellite
state vector X (Eq. (32) of [S]J,Athe-predicted X, Y
angles and the measurement vector B, (Eq. (34) of [3]).

Subroutine PKKM, called by PXAGBH, calculates the
covariance of the error in the prediction, P(k/k-1), from
Eq. (33) of [3]. The measurement matrix H(k), (Eq. (31)
of [3]), is .calculated by the subroutine HMAT, called by
PKKM. (See also Appendix B of [3]). The observation
weighting matrix, W(k), (Eq. (36) of [3]), is calculated
by the subroutine WATE, called by HMAT. The new estimated
state Veétor, (Eq. (35) of [3]) and the new covariance
of the error, P(k/k), (Eq. (37) of [3]), are computed by
the subroutine ALKPKK, called by WATE.

Since the steady state solution of the Riccati
equation is used, the Riccati equation has to be solved
only once. A special index KPASS is set to zero initially.
A test for (KPASS = 07) is made at the end of the ALKPKK
subroutine. If KPASS = 0, i.e., the program is in its
first iteration, subroutine PCNTRL is called. Otherwise,
the program goes back to TRAK2.
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Subroutine PCNTRL solves the Riccati equation,
(Eq. (50) in [3]), by an iterative procedure, starting
with an initial unit matrix. The iteration results
with the matrix PZ’ (Eq. (52) in [3]). Subroutine
ECNTRL is called to compute n and y, (Egqs. (61), (62)
in {3]}), which are needed in the computation of the optimal
control. Subroutine ECNTRL calls subroutine PFEEH to
compute the estimated X, Y angles. PFEEH calls TRAK3,
where the constant portions of Eq. (63) in [3] are
calculated. Equation (63) is later used in the calculation
of the optimal control. At the end of subroutine TRAK3,
KPASS is set to a value of 341 and the program is routed
to TRAK2Z.

.<—~ — - The Antenna System

A model of the 40 Ft. GSFC antenna system was
chosen. A block diagram is given in Fig, 3.2, (For
X channel; Y channel is identical).

-

- N
Motor Motor . ~Antennc

~._ Control , Wind Anol
Signal .Spied ‘ Aigle Gust ngle

u m m Errors X

G(s) 1 K .;fé,c (s)
e S B S : i a S
Figure 3.2

Antenna System Block Diagram



The data for the antenna were taken from unpublished

notes by Philco-Ford Corporation.

The transfer function for the tachometer loop is

given by:
Xpls) 8.33(.04755+1)
U(s) 0050552 + .108s+1
78.2s 1 + 165052 | |
= —7 —5 (3-5)
1+21.4s ~ + 198s ~
orT
' | -1 20 . 1 NN
Xm(s) = (-21.4s 7-198s 7) Xm(s) + (78.2s ~+1650s “)U(s}

(3-6)
The relation betwecen the antenna angle X and the
motor angle Xm is given by the following differential
equation: (Eq. (13) of [3]).
. . . . 2 1
S JX(t) + £X(t) + N°K (X-—Xm) = n(t) : (3-7)
' N



where

J - moment of inertia 6f the antenna = 1.95 x
10% in 1b-sec?

.f' = friction coefficient = .1 iﬁ 1b/rad/sec

N . = gear ratio from motot to antenna = 763

K = spring coefficient = 1.53 x 10° in 1b/rad

i}

wind gust disturbance '

n(t)

The differential equation for the wind gust disturbance
is: (Eq. (14) of [3]): '

(3-

where w(t) is assumed to be white noise.

Taking into account the data, Equation (3-7), becomes
in Laplace transform:

>

X(s) (1+78557%) = 1.03s"% X (s)

6

+ .507 x 1072 572 n(s) (3-9°
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and the Laplace transform of Eq. (3-8) is:

R G i I '
SB(s)lzdizs T als) o (3-10)
Combining equations (3-6), (3-9), (3-10), one obtains
a signal flow graph of the whole antenna system shown
in Figure 3.3. The assignment of the state variables 1is
shown in the same figure.
The system state equations are readily written
out from Figure 3.3: - ‘
1 7 %2
X, = -785x, +1.03x +.507x10 Ox
2 1 ) 3 ) )
X3 = l - X4
/ B .
Xy = -21.4);4 * X _ +78.2u  (3-11)
Xg = : -198X4 +1650u
Xg = - X | +w
or in matrix vector form:
Ox L2 RETE DU G | (3-12)
I e i el

(See Eqs. (17) (21) of [3]))
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where:

= -
0 1 0 0 0 0 '
785 0 1.03 0 0 .507x10 0
0 0 0 1 0
F = 0 -0 0 -21.4 1
0 0 0 -198 0
0 0 0 0 0 -
_ - .
0 0 -
0 0
D = 0 G= 0
78. 2 0
1650 0
Lne 0 P Pllﬂ

The same set of sfate equations applies to channel

y as well.

~-.

The matrices F, D are read in as input data; they
are the ones which characterize the specific antenna con-
trol system. If it is desired to implement a different
antenna, or tracking system, it is only necessary to change
the F, D matrices, which are read in as array FP, DPHI by
the NAMELIST/DYNMIC/ in subroutine FPHI. After reading in
the antenna system data, the program proceeds as described
in reference 3], and in this section.

[ %
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Note that fhe wind gust distrubance appears as
one of the state variables in this model. It is one of
the errors mentioned in section 2.2, In this course of
"~ the solution, the wind gust state variable will be esti-
mated by the optimal estimator, and the optimal control-
ler will provide a control signal, minimizing the point-
ing error and taking into account also the wind gust error,

among other data. This cannot be accomplished in the
autotrack mode and it illustrates the potential useful-
ness of an optimal estimator controller technique.

Particular Problems Encountered in RATS[Development

In the following, some of the problems encountered
“during the development of the RATS program are described.

(1) Computation of the State Transiticn Matrix -

A Tiylor series expansion 1s made to obtain
_ the state transition matrix EXP[FAt], (Eq.
~_ (20) of [3]). The programmed computation
in the original program did not converge.
The previously used convergence criterion

was changed to the following one:

e
-

e ' 6

- Vo9
|trace ¢ , - trace ¢ | < 10 " 1
where
¢ = Taylor expansion including n terms
T : el Taylor expénsion including n+l terms
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This revised criterion produced acceptable
values. As a further check EXP[FAt] for a
6x6 matrix was calculated by taking the
exact inverse Laplace transform of (sI-F)—l.
The results of the two methods agreed to

an acceptable degree of accuracy.

(2) Matrix Inversion Calculation - The matrix
inversion routine, used in the previous ver-
sion of the program was found to produce un-
acceptable results. The routine was.replaced,
and an additional routine incorporated, using
an iterative method of calculation of calcu-
lating the inverse. In addition, the calcula-
tion of the weighting matrix used in the Kalman
filter was modified to calculate the required
inverse by a short iterative scheme, not in-
volving an actual inversion.

.
Referring to Eq. (36) in [3], it is required
'to calculate

-1 1

B"l = [R + HPH']®

at each time point. The short inversion pro-
ceeds as follows:

Let B 1(n+1) = B 1(n)[21-B(n+1)B 1(n)] be
the desired inverse at the next time point.
The method.saves considerable time and in
the cases run yielded good results.
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RATS COMPUTER SPACE ALLOTMENT

For a two-channel antenna control system with 6
state variables per channel, the computer space allotment
in the IBM 360/91 is as follows: '

1. With the plotting capabilities with 200
points per graph:

'3_8A8016 Bytes
or: 232,06410 Bytes
o or: 58,01616 Wo;ds (single precision)

vy

2. Without the plotting capabilities, approximately
19D0016

or: ,68,86410 Bytes

or: 17,216

Bytes

10 Words (single preéision)

The coﬁputing time 1s less than 2 minutes for 200
points. There is no significant difference in computing
time if the plotting option is used. 1In real time 200
point represent: '

200*%0.05=10 seconds
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4. Simulation Results

4.1 ORBTRACK Testing

In order to test the original SRI ORBTRACK program,
after it has been adapted to the IBM 360/91 system, sevefal_
simulation runs were performed. The same data as in some
of the origina1.SRI runs were used and the results com-
pared to the ones reported in reference [1].

A Mars mission case was chosen. The details con-
cerning the input data are given on pp. 57-61 of reference
{1]. For the purpoée of comparison, the cases illﬁstrated
in Figure 10(a), (b) and Figure 16(a), (b) of reference [1],
were run on the 360/91 system. The results of these runs
are reported in Figure 4.1, (a) - (f). These figures show
the time functions of the antenna angle errors. The ordi-
nate is in units of radians, scaled by a facter of 10“6.
The abscissa is'scaled in units of sampling, K. For these
runs the sampling period was At = .25 sec. The runs were
performed for a totél of XK = 400, i.e., t = K¥At = 400%.25
= 100 seconds. The.gfaphs in Figure 4.1 illustrate the
additional gréphical capability that was added to the
program. The angles are in the elevation-azimuth reference
frame. (In the new ATRK30 version it was converted to the
X, Y angles). - .

Figure 4.1(a) shows the error between the estimated
(by the optimal estimator) and the true (predicted from
trajectory data) ¢ angle. Figure 4.1(b) shows the same
for the © angle. Figure 4.1(c) shows the error between
the actual antenna position, for the é channel, and the
true ¢ angle. Figure 4.1{d) shows the same for the 0

angle. The errors between the actual antenna positions



for the ¢ and O channels, in Autotrack mode, and the true
¢ and O angles, are shown in Figure 4,1(e) and (f), re-
spectively. As mentioned in Chapter 3 and in reference
[1], the system actually considered was an optical track-
ing system. However the plant equations happen to be of
the same form as these for the 30 foot tracking antenna
model. The difference is in the parameters only and in
the controller in Autotrack mode. As one may see, the
general form of the curves, as well as the range of values,
correspond to the previous results. [1] '

4.2 Simulation with Nonlinearities. (ORBTRACK)

It is well known that the actual antenna control
system is nonlinear. Four types of nonlinearities, con-
sidered in this study, are shown in Figure 4.2 (a) - (d).
The abscissa is the control signal, u, at the input of the

nonlinearity, while u

N is the control signal at its output.

All praetical servo amplifiers saturate for signals
with large amplitudes. This property is reflected in the
noniinearity in Figure 4.2(a). The antenna has a finite
resolution for changes in attitude angles. If there is
a change around the zero angle, there exists a dead zone,
shown in Figure 4.2(b). Due to limited resolution there
also exists a quantizing nonlinearity in the loop, as the
one shown in Figure 4.2(d). 1In the 40 foot antenna the
hydraulic power drive contains quadratic nonlinearities of
the type shown in Figure 4.2(c).
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[}
In the simulations that were performed, a non-

linearity was applied in the forward path of the control
signal. In other words, as soon as the control signal

u was calculated by the regular procedure, (assuming the
whole system is linear), a new control signal uy was cal-
culated, depending what nonlinearity was assumed, accord-
"ing to Figure 4.2. The simulation indicates the be-
havior of a system with a nonlinearity in which the
control signal is calculated assuming that the system

is linear. The simulations were carried out using the
plant availabie in the ORBTRACK program. However, as
mentioned before, that plant has the same general form as
the 30 foot antenna control system. All basic data were
the same as the ones used in the simulation shown in Figure
4.1. All the simulations with the nonlinearities were
performed in the optimal estimator-controller mode.

The saturation nonlinearity, shown in Figure 4.2(a),
was tried first with a very low thresh?ld value of u, = .002.
The results of this are shown in Figure 4.3(a), (b). As
one may see, the system is highly unstable, which should
have been expected for such a low value of u, -

e

By increasing'the value of u; to uy = 1., the ¢
channel was stabilized, as may be seen from Figure 4.4(a).
Channel © still remains unstable as shown in Figure 4.4(b).
This channel is stabilized by choosing uy = 30., however it
still has a relatively high overshoot, (Figure 4.5(b)). The

behavior of the ¢ channel 1s basically the same as for u; = 1.
as shown in Figure 4.5(a).

Another asﬁect of .the optimal control process in-
volved was investigated, namely, the influence of the values
of the weighting coefficients of the control signals in the
performance index, b

¢

and by.” The same runs, shown in
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Figufes 4.4 and 4.5, were run with lower values of b¢ and
b¢ by a factor of 100. The corresponding results are
shown in Figures 4.6 and 4.7. As can be scen, there is
no drastic difference in the system's performance. How-
. ever, comparing Figure 4.4(a) with Figure 4.6(a) and Fig-
“'ure 4.5(a) with Figure 4.7(a); it appears that the under-
shoot in the ¢ channel is smaller forAhigher values of b¢
and b@' The same applies to the settling value bounds;
for higher values of b¢ and by they are lower. There is

practically no difference in the behavior of the © channel.

The dead-zone nonlinearity, shown in Figure 4.2(b)
was simulated with a small threshold value of uy = .002,
" The results turned out to be identical to the linear sys-

tem, shown in Figure 4.1(a) - (f).

The quadratic form nonlinearity, shown in Figure
4.2(c) was tested for values of u; = .00Z and a = 1.
The system was unstable with the response similar to the
one shown in Figure 4.§(a), (b). |

The quantizer nonlinearity, shown in Figure 4.2(d),
was simulated for the quatizing value of up = .002, and
for different values of b¢ and b@. The results are shown
in Figures 4.8 and 4.9. Comparing Figure 4.8(a) with
Figure 4.9(a), it can be seen that for lower values of b¢
.and be the undershoot in the ¢ channel 1s larger as is the
settling value. On the other hand, as may be seen from
Figures 4.8(b) and 4.9(b), for the © channel, for lower

values of b, and b, the overshoot is lower. The settling

¢
values appear to be the same. There is no undershoot for
the higher values of b¢ and b,.
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An attempt to perform direct synthesis of single-

loop control systems with the

'path is reported in Chapter 5.

formed and the nonlinearities

nonlinearity in the forward
No linearization is per-

are treated directly. The

basic computational technique employed is that of Mathe-

matical Programming. Stabilization of the systems in-

volved is performed utilizing the criteria of Popov and
Jury and Lee. Extension to multiloop systems with mul-

tiple nonlinearities is planned in future studies.

4%
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~.

. 4.3 Simulation of the 40 Ft. Antenna

\

The data used inAthe simulation with the RATS

program were as follows:

Initial satellite position and velocity in

‘Earth centered coordinate system and their initial

estimates:

le

2¢

3e

e

2e

3e

m/sec

~~—

"m/sec -

m/sec

Actual

.65700x107 -

.77891x10

4-27

4

_Estimated

.65701x10

.77892x10

-0.‘

7

4



" The initial antenna state vector was:

State No. Actual Estimated
1 (Y,rad) -.13736 '-.0022
2 (?,rad/sec) 0. T 0.
3 (Ym,rad) -173.6 -172.7
y “ . .
Channel 4 (Ym,rad/sec) 0. 0.
5 (internal 0. 0.
unidenti-
fied
state)
6 (disturb- 0. 0.
ance) .
r-]
) State No. “Actual - Estimated
1 (X,rad) -1.573 1.708
[/
_ 2 (X,rad/sec) 0. 0.
3 (Xm,rad) 1341 .- 1341.
X ' .
Channel 4 (Xm,rad/sec) 0. 0.
5 (internal 0. 0.
unidenti-
fied
state)
6 (disturb- 0. . 0.
ance) :
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Tracking station' initial location, (See Figure A-1

. in Reference [2]):

.0349 rad

<
[}

20

(o]
0]

<24725 rad

14.2°

. "Na.
The satellite is assumed to be in a circular orbit (éaOf)ﬁKﬂqs
around the earth in the equatorial plane. The sampling '
period was T = 0.05 sec. and the program was run for a

total of 5 seconds (100 sampling points).

The initial covariance matrix was:

P(o/o) = diag [.S, .5, 0, 10 8 10718 o,

For all 12 antenna

states

—
-

The measurement noise covariance matrix was:
R = diag [.625, .4, .25, .18, .1, .1, .625,

4, .25, .18, .1] x 102 '
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The state noise matrix Q was taken to be a

-12
diagonal matrix with all entries equal to 10 l“;

The results of the run, (pointing error) were
as follows: '

- X Channel jY Channel

Initial Overshoot, deg. 190 7.7
Initial Undershoot, deg. -24 -1.0
-Acquisition Time (crror [
< 1°), sec. 0.90 0.20
Steady State Error, deg. 0.001 0.004
Settling time (until
steady state is reached), '
sec. 2.30 ©1.20
e . .
4.4 B Sim&lation,of the 30 Ft. Antenna

The ATRK30 progrant was run for the 30 Ft. antenna
tracking station. The mission data were the same as in
the simulations reported in Section 4.1. The only differ-
ence was in the plant which in this case was the 30 Ft.
antenna control system, described in Chapter 3.



The results of the simulation, which was run for

100 sec. were as follows:
X Channel Y Channel
Estimator ' Estimator
Controller | Autotrack | Controller | Autotrack
Initial
Overshoot,
deg. .001 .055 0 0
Initial
Undershoot,: :
deg. -.,0003 0 - -.0005 -.0002
Steady State
Error, deg. .00006 .052 .00006 .0001
Settling Time .
Sec. - 40 50 40 90
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5.0 CONTROL INCLUDING NONLINEARITIES

5.1 Introduction

As one may see from the description in the pre-
vious chapers, the nonlinearities existing in the system
state equations, have been trcated by a first order lin-

earization.

In this chapter, some direct methods of treating
nonlinear systems are proposed, and some specific examples
worked out. Initially, a method of computing the optimal
contrel in a system containing a nonlinearity, using
mathematical programming, is proposed. In the second part
'8f the chapter a method of combining Popov's and Jury and
Lee's stability criteria for nonlinear system with a non-
linecar programming algorithm, is worked out in detail.
This method may be used in automized stabilization and

centrol of nonlinear systems in real time.

F-]

5.2 Optimal Control of Nonlinear Discrete Time Systems,

Survey

After the formulation of the Maximum Principle for
optimal control of continuous time systems was reported[l]
considerable work was done in establishing a parallel ver-
sion of the Maximum Principle for Discrete Time Systems,
i.e., the so-called Discrete (or Digitized) Maximum Prin-

[2]

to mention only a few. In about all the

ciple.. The extension has been made in references
pt. III,[3~9]
references mentioned, necessary conditions for optimality
have been derived. However, in cvery case one is faced

with solving a two-point houndary-value problem. Indeed,
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none of the guthors quoted have implemented their resuits
in practical computations. It has been one of the goals
of this project to find an efficient computational solu-
tion for the design of optimal discrete-time control sys-
tems.

It has been found that at present the only way of
getting computational results in the design of optimal
discrete-time control systems, and especially in the case
of nonlinear problems, would be by the use of mathematical
programming. In the case of linear discrete-time systems,
~one may use the dynamic programming approach, for low-

10] for uniform

dimensioned systems, as was done by Tou,
sampling. A suboptimal solution for non-uniform sampling
[11] Although

mathematical programming, in the nonlinear case, has its

has been proposed by Brockstein and Kuo.

own computational difficulties, it is still the only method
by which numerical results may be obtained with relatively
little complexity. Similar ideas have also been expressed

[12]

R ]

ﬂby J.B. Rosen.

The use of mathematical programming should not be
regaraéd as a complete alternative to the Maximum Principle.

As a matter of fact, they are interrelated.

In a recent paper by Canon, Cullum and Polak,[13]
general necessary conditions for optimal control have been -
developed. As particular cases of those conditions, the
authors have demonstrated that it is possible to derive
the Lagrange Multiplier's method, the Discrete Maximum Prin-

[6,8] as well as the theorem of Kuhn and Tucker for

[14]

connection between the Kuhn-Tucker theorem and the Maximum

"ciple,

nonlinear programming. Similar results, showing the
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Principle have also been derived by L.W. Neustadt,[ls]

16] Perhaps one

and by J.B. Pearson and R. Sridhar.[
should regard mathematical programming as a way of com-
putational realization of the necessary conditions of

optimality, given by the Maximum Principle.

Linear and Quadratic Programming, which are particu-
lar cases of Mathematical Programming, have been previously

applied in simple configurations of Linear Sampled Data

[17-211 o, this report the more general

[22,23]

Control Systems.

method of Nonlinear Programming is applied to Non-

linear Nonuniformly sampled, Discrete Time Control Sys-

tems.[24’25] '

5.3 Formulation of the Problem

The dynamic system under consideration is governed

by the following set of state equations:

e ]

y(i+1) = £ly(i),u(i),i] | (5-1)

where:

n-dimensional state vector at the

x(i)

discrete time instant t = ti
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u(i) m dimensional control vector at t = ti

f = nonlinear, time-varying, n-dimensional

vector function

N = maximal number of discrete time intervals
considered; the intervals are in general

- unequal

At each discrete sampling time, the system may
be subjected to an additional set of equality and in-

equality constraints:

hyly(i),u(d)] = 0; Jo=1,e..,p (5
g ly(i),w(1)] 205 k=1,...,q (s
where hj; g are generally nonlinear functions.
It will be_assumed-that the initial state vector
is specified:
y(o) =y N

O



The general optimal control problem for the dis-
Ccrete time'system under consideration, could be formu-
lated as follows:

“Bring the system described by equations (5-1)

from the initial state.y , into a target area described

by:
alym)] > 0

where a is a 2-dimensional, nonlinear, vector function,

so that the following performance index is minimized (or

maximized):

N
3= D0 F [y(1),uG-1,i] .

i=1
-

where F is abnonlinear‘time*varying function, subject to
the constraints (5-2), (5-3).

Considering the formualtion of the control problenm,
as well as the expressions involved, one may see, that it
constitutes a classical mathematical programming problem
with (5-6) serving as an objective function, (5-1), (5-2)
as equality and (5-3), (5-5) as inequality constraints.

A suitable algorithm is to be chosen for the numerical
solution of this problem. In the following section, an

example illustrating the method, is presented.

5-5°
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5.4 Computational Example

A part of a 40°ft. antenna tracking control systen
is considered. The system consists of a separable linear
and nonlinear subsystem. The dynamics of the system are

represented by the following set of difference equations:
ix(ifl) = A y(i) + bNL [ﬁ(i)]

where,
A =n x n constant matrix

n-dimensional constant vector

=2
it

£

u(i) = scalar control variable at t = t.

NL = a nonlinear scalar function

The system under consideration is uniformly
sampled. In view of this, one may now express the state

vector at any time instant t = tyo as[lo]:
N-1
y) = AN y(o) + 2‘ AN"11 N u(i) ]
i=o

where y(o) is the initial state vector, assumed known.

5-6
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The output of the system is represented by the
first component of the state vector, Yq- The purpose
of the control action is to bring the output yq to
align with a prescribed reference position YR This con-
trol action, should be done with minimum expense of
energy. Following these requirements the following per-

formance index was formulated:
Minimize

2
s[Yl(i) - YR] + W uz(i-l) | | (5‘9)v

-

)
i
[

where W is a weighting factor, and N is the maximal number

of sampling instants consigered.

The meaning of the first term in the ﬁerformance
index in eq. (5-9), is minimization of the squared error,
at any time instant considered, between the actual and
the desired output position of the system. The second

term, represents the minimum energy requirement.
From equation (5-8) it follows that:

i-1
y, (1) = AJy(o) + Z Ai'J‘lp_NL[u(j)} | (5-10)
j=0
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JaZ

. where A1 represents the first row of the matrix A.

Substituting eq. (5-10) into eq.'(5-9),‘one obtains:

N i-1

EED N PN e I

i=1 j=o0

. W uz(i-1)$

i
As one may see from eq. (5-11), one has a non-
linear performance index, or objective function for the.

~solution of this problem.

Additional constraints limiting the amplitude of
the control signal were posed: )

The objective function in eq. (5-11), along with the con-
straints in eq. (5-12), form a nonlinear programming prob-
lem, with N variables and 2N inequality constraints.

The algorithm applied for the solution of this problem,

was the SUMT mcthod,IZé] on the IBM 360/91 computer
system. '

5-8
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The actual system considered, was modeled as a

third order system, for which:

-.114 1.000 0. ".179
A = L2330 - 114 1 b =1.550
-.275 .233 0. .115

The nonlinearity considered was of the saturation type,

modeled by a hyperbolic tangent function:
NL(u) = S tanh(u/S) : ‘  {(5=13)

where S is the output of the nonlinearity at saturation,
or in this case, when u+», On many occasions, a satura-
tion is modeled using sharp corners at the passage from ‘
the linear region to satuTation. In many practical systems,
like in servo amplifiers, this passage is rather smooth,
and the function in eq. (5-13) seems a suitable model to
represent it. In this example, the saturation value was

chosen to be S = 10.

-

The maximum allowed control signal amplitude, was

10. The initial state vector was: ™

fixed at um

it

y (o)
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and the desired reference value, yp = 1.0. The program
was run for a total of 20 sampling pericds, i.e., N = 20.
The results are summarized in Table 5.1 and in Figﬁfes
5.1 and 5.2.

5.5 Aﬁtomized Stabilization and Control

Automized stabilization and control is a problem

- of primary importance in the field of computer real-time

process control. The problem is particularly difficult
when one considers control of nonlinear processes. While
there exist relatively easily programmable stability
criteria for linear systems 2], the situation with non-
linear systems is entirely different. One could of course
employ an approximate linearization of a nonlinear system
and then apply stabilization algorithms suitable for

linear systems. This kind of approach may be suitable to
certain classes of systems, however it may involve untoler-
able errors iﬁoothers. Therefore, there is a definite need
in-formulating stabilization alébrithms directly applicable
to nonlinear systems and at the same time - amenable to
efficient computerization in real-time. This problem is,
no doubt, of considerable interest in many industrial
applications, however, to the best of the author's know-
ledge, the problem has not been treated and solved in the

literature.

In this report, several stability criteria for non-
linear systems are reformulated in a form directly appli-
‘cable to real-time stabilization and control of nonlinear
systems, using a time-sharing digital computer system. Two
basic configurations of computer control of nonlinear

processes, are considered.
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TABLE 5.1

SAMPLING INSTANT| OUTPUT. | CONTROIL SIGNAL | ERROR
i yq(i) u. 4 e;=y;(i)-yp
1 09494 1.1075 - .905063
2 1.22355 2.3787 . 223548
3 1.04979 .5408 .049791
4 1.00955 1.3428 .009553
5 .97008 1.2791 - .029922
6 1.01657 1.2225 .016570
7 96834 1.2601 - 031656
8 1.02376 1.2402 023765
9 97652 1.2814 - .023479
10 1.03857 1.2390 .038575
,,,,, 11 .96528 1.22112 - 034724
12 1.01545 1.2390 015446
13 - .97425 1.2528 - .025753
14 1.02848 1.2791 028779
15 .98529 1.1200 - .014708
16 .99706 1.2555 - .002943
17 98556 o 1.2476 - 014439
18 1.00052 1.2287 .000521
19 .97809 1.2304 - .021913
20 99744 1.2589 - .002564

-~

-

The total computing time was 12.19 sec. on the IBM

The value of the optimal performance

360/91 system.

index was:
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(1) Parameter Adjustment Control. In this case,

the parameters of the system may be adjusted
through direct digital control. However, the
computer system is actually outside of the
control loop, which is a continuous, nonlinear
feedback control system. The detailed treat-
ment of this configuration has already been

reported in detail previously,[zg].

(2) Digitally Controlled System. The computer

system is actually a part of the control loop
in this case. To be more specific, the con-
troller of the system is programmed on a real-
‘time special purpose computer, or on a time-
sharing extension of a universal computer
~system. The parameters of the controller are
actually input data to the subroutine which
realizes the digital controller. The system
considered, is naturally, a sampled-data non-
[34]

linear control system.

The basic algorithm proposed for the system of type
(2) will be discussed in section 5.7 and an example pre-
sented in section 5.8. The stability criteria used were
Popov's[zg] for the system of type (1), and Jury and Llee's
Lee's 301 for the system of type (2). The stability cri-
teria are reformulated with respect to the particular
process control configurations considered. As a result
of the reformulation a nonlinear programming problgm[zz’zs]
is obtained.  The SUMT algorithm, originated by Fiacco and
McCormick[26] is then applied to the numerical solution of
the problem. As a result of this calculation a set of
the system's parameters is obtained, which stabilizes the
system and satisfies a set of performance criteria at the

same time.



It should be noted, that in the case of the system
of type (2), the nonlinear programming problem derived,
involved complex variables. This type of problem has not
been reported as solved in previous publications. The
SUMT algorithm was suitably modified for application to
the solution of nonlinear programming problems involving
complex variables. While applying the SUMT algorithm,
there is the option of choosing various unconstrained
minimization techniques. A comparative study involving
the use of some of the available techniques has been con-
ducted and will be described in section 5.9.

5.6 Parameter Adjustment Control

A general process control system with a nonlinearity
is considered, as shown in Figure 5.3, G(s,p) is the trans-
fer function of the linear part of the system and it depends
in general, on a parameter vector p. The nonlinearity satis-

fies the following conditions:

a. n(e) is defined and continuOUS‘for all values

" of e.
b. . n(o) = 0 and en(e) > 0 for all e # O.

One possibility of accomplishing computerized con-
trol of the system, is by adjusting the camponents of the
parameter vector p, through the scheme in Figure 5.4. 1In
general, G may contain both the original plant as well as

the controller.



@ o

G(s,p)

(a) System Biock Diagram

. (b) The Nonlinearity

FIGURE 5.3 THE CONTROL SYSTEM
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It may be reqdircd, that during the process, the
system should work under varying performance criteria.
At all times, stability is to be maintained, and the para-
meters p are to be adjusted accordingly by the computer.
In view of the presence of the nonlinearity in the loop,
classical methods of linear analysis[27] may not be used.
The particular'nonlinearity, which represents a wide class
used in practice, corresponds to the conditions of Popov's[zg]
stability theorem. The theorem states that the system

will be absolutely stable if for

0 < n(e) <K . | (5-14)
There exists a non-negative real q such that
1 :
Gl(m,g) - quz(w,Rl x> 0 (5-15)

where

'K is the maximal allowable instant gain (ratio between
input and output) of the nonlinearity. Expression (5-15)
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may usually be expanded into a set of inequalities which

are functions or p, K and q:

v
o

.gj(R,K,Q) >

Formulating a general performance index
Minimize (or Maximize) J = f(p,K)

and adding any additional constraints, as required by
.various practical considerations, one would obtain a
classical nonlinear programming[zz’zsl problem.

Example 1. A Third Order System. The transfer
function of the linear part of the system is

1

G(s,p) = 2

(s+a) (sz+26wns+wn
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The parameter vector is

n

Introducing x = 1/K and applyiné (5-155, one‘ogtains[zslz
xw6 + [x(aZ-an2+ 462wn2) - q] w4
; + [x(462a2wn2-232wn2+mn4) + quawn +'qwn2
i 26u_-2] w® + (xa’w *raw %) > 0 . | (5-19)

F

Since both x and q are non-negative, andxsince»equation
(5-19) contains terms of even order of w only, the

inequality (5-19) will be satisfied for all w, if the

following inequalities are satisfied[zs]:

.

2 —

xaf-2u frastu By - > 0 R . (5-20)

2
n

x(462a2wn2-2a2wn2+wn4) + Zanwn + qw

- 26w, - a >0 o (5-21)
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In addition the following

. < 8§ < 6
min — — max
. < < a
amln — a -— max

w

< w
n — nmax

constraints have been imposed:

i

The performance index for this example was chosen

according to the following

occasions, one would like to adjust the system parameters,

so that one could work wit

(which in this case happens to be K), and still retain the

stability of the system.
to have the shortest possi
quire working with a iow d
requirement of maximizing
require a higher value of

the optimization problem i

combined performance index, one should assign an appropri-

ate weighting factor to sh

both requirements.

the performance index could be chosen to be linear instead

of quadfatic:

Minimize J = ¢cx + 6

considerations. On many

h the maximal forwafd gain

On the other hand, one may want
ble rise time, which would re-
However, the
1/K) would
§. The two requirements drive
In the

amping ratio 6.

K (or minimizing x =
n opposite directions.

ow the relative importance of

Since both x and § are non-negative,

(5]

-20
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As a result of maximizing K one may obtain the value of K
at the limits of stability. In this case the result should
be oﬁly indicative; it does not mean that the system should
actually be working with this maximal value. The following
limiting constraints were imposed, in addition to the
stability constraints (5-20), (5-21):

.5 <8 < .707

w-< 3. rad/sec



The nonlinear programming problem was solved for different

values of the weighting factor c.

The SUMT prcgram[28

performed on the IBM 360/91 computer.

are tabulated as follows

! was used in the computations,

The results obtaineg

c { .01y .oz} .os{ .10{ .15} .18| .20 .soz
min{ 4.00| 4.00{ .90 .312} .128| .081} .066 .0642
K| .25] .25| 1.100 | 5.200] 7.810] 12.35 | 15.15 | 15,61 .

5 Sl .5 | 612 .654| .676| .684| .687 .687%
w | .5 | .5 § 1.414 1,861 2.420| 2,785 2.972 | 2.999 i:
a = for all cases

For each value of ¢, the run time for the solution of

the nonlinear programming problem was about 1.30 seconds.

Each problem included five variables (x, a, §, Wy q) and

seven inequality econstraints.

\\\\ Example 2,

A Fourtn Order Systen.

of the fourth order system was chcsen to be:

G(s,p)

1

6

(52+26

15 825 wpps

1%n

2
ls*wnl )

w
nz

> 0

(52+26

)
2%n25% %2

The general forn

(5-::



The adjustable parameter vector in this case is:

In the same manner as for the third order system,

one obtains the following stability inequality constraints
[28]. '

2 2

+ (26,%-1) w,

2
(26l -1) Wi >0

2 2 2. 2

£H

2 2 4 4
2671 tegy st “n2 ]

+ 1 - 2q(51wn1+62wn2) >0

2

2 2 2
wanl w5 [(26l -1) W2

+ (26,%-1) w °)

* 2w 0000 (8w o%8,u,,)

\

2458

T Why T¥n2 182901902 20

5
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1

The performance index was:

Minimize J = ¢x + 61 +_62

The additional constraints:

oo
A
[38)
]

€
A

< 3. rad/sec.

€
A

< 3. rad/sec.

The results were as follows:

S

c .01 .05 .10 20 1.0
Xpin| -251| 165 | .138 | .121 | .100
K. | 3.98| 6.14 | 7.25 | 8.26 | 10.0
6 708 | 710 | .71z | 714 | .723
w ) | 2.999 | 2.999 3.0 3.0 3.0
5, .5 .5 .5 .5 .5
W, 236 | .398 496 | 611 | .96




For each value of c, the run time for the solution of

the nonlinear programming problem was about 1.45 seconds.
Each problem had six variables (x, §,, wips 8y 05, q)
and nine inequality constraints.,

5.7 Digitally Controlled System

The system under consideration is sketched in
figure 5.5. The controller of the system is part of a
‘digital computer. To be more precise, the digital control-
ler is realized as a subroutine programmed on the computer
. used for the control purpose. Either a special purpose ‘
control computer or a time-sharing station connected to a
central computer system may be used. For instance in the
case of the digital control of the 40 ft. antenna tracking
system, to be-discussed in section 5.8, a SDS Sigma 5
computer is used, and the digital controller is programmed

-©

in assembly language.

The system considered (figure 5.5) is a sampled data
nonlinear system. In this case, a different stability
criterion should be used, namely the Jury and Lee criterion
[30]. The following conditions are imposed on the nonlin-

-

earity: ‘.///
a. n(e) is continuous B
b. . n(o)l= 0
c. k>2llso, foreso
g gp(él < k-
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FIGURE 5.5

DIGITALLY CONTROLLED SYSTEM
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1f G*(z) is the overall z-transfer function of the linear
subsystem, including the controller, the Jury and Lee
theorem states that the system is absolutely stable if a

q exists such that:
JL(z) = Re{G*(z) [l+q(z-1)]} + % - E:lﬂi l(z-l)G*(z)[2 >0 (5;30)
, . v

is satisfied on the unit circle z = exp (jwT), where T is

the sampling period.

The computational algorithm in this case, would

- _have to run in two phases:

(1) Establish, for which value of z, does the
left side of inequality (5-30) have the

minimal value.

(2) Substitute,the value of z obtained in phase
(1) into inequality (5-30), and use it as a
‘basis for the nonlinear programming problem
to establish the optimal parameters that would
stabilize the system. Of course, one has to
formulate a suitable performance index and

one may pose additional constraints.

This algorithm may be applied to a variety of dig-
italiy controlled systems. For instanbe, it could be used
in automized stabilization and control of antenna tracking
systems. Two examples simulating the implementation of
this -algorithm are presented in section 5.8. A flow chart
illustrating the proposed algorithm is sketched in figure

5.6.

27

192
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(1) | FIND Z, FOR WHICH
_ JL(Z) IS MINIMAL

L

) SUBSTITUTE
(2) JL(z,) 2 0 (1)

L

SOLVE A NLP PROBLEM
MIN (OR MAX)

J(P)
SUBJECT TO (1)
AND ADDITIONAL
CONSTRAINTS

a(P) 2 0

h(p) =0

- l

FEED OPTIMAL | SUBSTITUTE
PARAMETER SET INTO J(P) = J(P)/NEU
SYSTEM

YES

STAND BY

FIGURE 5.6 THE ALGORITHM FOR THE DIGITALLY CONTROLLED SYSTE

S
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5.8 Digitally Controlled Antenna Tracking System

As an illustrative example of the stabilization
algorithm proposed, the case of computer control of a
40 foot antenna tracking system of the NASA Goddard Space
Flight Center was chosen. The basic s?stem configuration
is sketched in figure 5.7. The z-transform transfer
function of the linear part of the plant, including a zero-

order-hold, is:

17922 + .55z + .115

G(z) =
22 - 1142% + 2332 - .275

The nonlinearity is assumed to satisfy all the con-
ditions specified in section 5.7. Otherwise, no particular
configuration is assumed for the nonlinearity, which makes
the solution applicable to a wide class of system.

- .
The digital controller was chosen to be of second

order:

a z% + a,z + a a +a.z 1+ a2
o 1 2 _ 1 2
D(Z) = > =

z +-b]z + b2

The parameters of the digital controller, ag, ay,
a,, bl’ b2 are unknown variables and should be established
in the process of the solution. The digital controller
may be progfammedlon'a digital computer according to well
established methods[SIJ.
controller is somewhat arbitrary and rather based on

The choice of a second order
experience. There is no loss of generality in this choice,
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since the same method would apply to-any order of D(z).
The only difference it would make is in the number of
variables. One should, of course, try to solve a prob-
lem with a minimal number of unknowns, so one would not
want to make the order of D(z) too high. Since the plant
- is of third order, it is reasonable to choose the control-
ler of one order less. Anyway, the choice of the order
of D(z) is a minor issue of this work; what is important,
is the method of establishing the actual values of its
parameters. These parameters are physically input data
to the subroutine which realizes D(z). The communication
between the controller and the continuous time plant is
accomplished through A/D and-D/A converters.

The transfer function- of the whole linear subsystem,

which includes the plant and the controller, is:

G*(z) = D(z) G(z) =

E ]

fagra,2? 7 | | -3
‘\a_+a.,z “+a,z -1 -2 -3
e o 1 2 .179z “+.55z "+,115z2 (5-33)

@+b z‘1+b2z‘2)(1-.114:’1+.233z‘2-.2752'3)

1

As mentioned in section 5.7, the first part of the
algorithm involves finding the value of z for which the
"left side of inequality (5-30) is minimal. In other words,
one would like to find the value of z for the worst case
when the stability of the system is mostly ''threatened."
It should be remembered, that the left side of (5-30),
JL(z), should be non-negative in order to satisfy the
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stability criterion. According to this criterion, z is
restricted to be on the unit circle in the complex z-plane,

i.e.,

Z = erT (5.
or

lzf =1 _ - (5

One of the simplest ways of finding thelvalue z.
which minimized JL(z), is by direct search, since only one
independent variable z 1is involved. The restrictions in
(5-34) or (5-35) should of course be preserved. This is
done simply by performing the search using the real value
of 2z, Re(z), as an independent variable, and then comput-

ing the imaginary value of z by:

Im(z) = V1 - Rel(z) o 6

e

In this example the search was performed by direct
scanning over the values of Re(z) at a fixed interval.
Of course, one may use more sophisticated search methods
if desired. vThe search took 0.3 seconds on the IBM 360/91

system. The results obtained were:

Z

-.270 + j.963
m .

JL{ Zm~)

-7110.0 | - 4 (s
The same problem was alsc solved-as a nonlinear pro-

gramming problem using the,SUMT[26] method. The nonlinear

programming problem was formulated as: '

~
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As one may sce, the objective function in this problem

depends explicitly on a complex variable z and on a complex

~function G(z). (See equation 5-30). In this problem G(z)

is used instead of G*(z) in equation (5-30). For the purpose’
of the numerical solution, instead of'z, one works with two
variables X1, Xy, which are the real and imaginary parts

of z:

The complexity of 2z and its connection with x =Re(z) 1is

~ stipulated in the program by the following two FORTRAN IV
>

statements:
COMPLEX 2
EQUIVALENCE {2, X{1i))

-
-

This automatically implles that X(Z,ixz 1s the imaginary

part of z,

The conditions in equations (5-34) or (5-35) were

taken care of by imposing an explicit equality constraint.

(5-38)

(5-39)

(5-40)""



Although‘the constraints in this case (see equations
(5-38) and (5-40)) are very simple, the objective function
JL(xl, X5, K, K', q) is a very .complicated function of all
the five variables of the problem. Although JL itself is
real, it does depend on complex values z and G(z) explicitly,
which makes the numerical solution of the nonlinear pro-

gramming problem quite difficult. In this case, a special

‘technique of unconstrained minimization, developed by

[26]

Fiacco and McCormick was adopted. This technique does

not require the explicit calculation of the derivatives of
the functions involved. This propérty is important in
this solution, considering the complexity of the JL function.

The solution obtained in this case was:
“n = -.288 + j.958
JLFzm):i '7101f0,
K = 48.4

KV

.q = 100.0

—

This example ran for about 28 seconds on the same system.
One may argue that the SUMT run was unnecessary, however
one would not be able to perform the search without the

appropriate values of K, K' and q, which were obtained in
the SUMT run. The search performed after that is needed,

since the particular algorithm employed in conjunction with

-SUMT is known for its lack of precision, whenever compli-

cated functions are involved. Still, by comparing the



results in equations (5-37) and (5—41),:one may see that
they are not too far apart, (.13% forfJL(zm)). Obviously,
the result of the search, equation (5-37), was picked,
since in it JL(zm) is smaller. The search revealed that
the value of JL(z) is quite flat in that region;

"

-7074.2

JL[Re (z) -.30]

L]

-.25]

JL[Re (z) -7078.5

So, that precision within the second significant figure
of Re(z) is not critical.

The value of z. in equation (5-37) was used in equa-
tions (5-30) and (5-33). This time, the value of G*(z) of

equation (5-33) was substituted into JL in equation (5-30).

Now one forms a newenonlinear programming problem:

Min {J(K,K') JL(K,K',Z,ao,al,az,bl,bz) > 0; peP | (5-42)

where

= [K,K',q,a_,a,,a,,b;,b, ] is the parameter vector
R £0,34552158750750) P

in this example.

P is a closed set; in this case the values of all of the
parameters involved were limited in size. The limit im-

posed on all parameters 1in this case was:

l

i| < 100.0; i =1, ..., 8 (5-43)

]



The performance criterion in this case was of the form
Max J = K + w K ' (5-4¢

where w is a weighting factor, in this case chosen as

~w=l, The meaning of the problem is that one would like to
find a set of parameters p, which would permit operating

the system with maximum values of K and XK' while keeping the
system stable. ’

Since the SUMT program is geared to solve minimi-

zation problems the performance criterion is reformulated:
Min J(K, K') = -K -wK' : ' - (5-4:

The results obtained in this run, which took §
seconds on the IBM 360/91 system, were:

~_

K =K'= 100.0 (i.e., working at the 1imit)
q = 15.C

a, = 131

a, = .063 | by = .100

a, = .129 ‘bz = ,094

- Or, in other words, the digital controller is:



1 2

L131 + 063z 7 + 129z

1+ .100z 1 + L0942 %

D(z) =

_ The actual value of JL for the mentioned parameters
. was 0.08. This is quite close to the stability limit of
zero. Therefore, in actual operation, one should work -

"~ with somewhat lower values of K and/or K'. In solving
problems like this, one should set an a priori limit of

K and K' about 20% higher than really desired. It should
be stressed, that the search for zm,is done unfrequently,
and that only if there is a considerable change in the
plant's parameters. In view of the short computing times
for the parameters of the digital controller, this algo-
rithm could definitely be employed in real-time control
of processes, where changes in system requirements do not
occur more often than about every 10 seconds. This could
indeed cover a very wide class of computer controlled.

processes.

£

5.9 Comparative Study of Minimization Techniques

In real-time computer control the computational

efficiency of the algorithms used is of crucial importance.

The SUMT program, proposed for use in computer controlled
algorithms involves the sequential use of unconstrained
minimization techniques. There is a wide variety of

available techniques[26’32]

that could be used. In order
to evaluate their effectiveness for the particular class
of probiems discussed in this report, a comparative study
was performed. As an example, the fourth order system,
discussed in section 5.6, was chosen. The methods tested
could be classified withiﬁ the gradient methods using

variable metrics.[26’32’33]
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To describe the methods used, the following notation
is introduced:

= the solution vector at iteration i, of
dimension n.

f(x) = the objective function.

‘;'f.l = the gradient of the objective function at
point x..

r; = the unit vector in the direction of the next
step from X5

di = the step size of the next step from X5

Si T Xjey 7 X % 43I

Yi = Ve 0V

A = [3 f/axiaxj] = the Hessian matrix

Yi = [Xor Yis v Y-i-_l]
. x; = Hy VE/

-1

the metric

T
"

The methods tested on the IBM 360/91 system and the
appropriate results are tabulated as follows:



COMPUTING
~ | NUMBER OF TIME
METHOD THE RECURSIVE FORMULA ITERATIONS| IN SEC.-
. Newton H. = AL (x.) , ' 61 1,40
Raphson 1 (x;)
: T - 4T
. Reduced [-Yllyz {-YllYZJ ol e -
Gradient T. .= : B 2 D T U 1 .
Projection -1l In Tn e
: T
Projected |, - (H7;) (Hyy4) 156 2.93
Gradient i+l i B *
Ly HiYs
T
. Unsymmetric (s;-H.y.) (H.,y.)
Variable |H; ,q = H; + —— "0 22 344 6.13
Metric 1. Y; Hixi
. - : T
Modified ) (gi—Hixi) cii'HiXi) : )
Fletcher- Hi+l = Hi + T 354 6.63
Powell A (ii-HiXi)
T
_ VL. vE.
Fletcher- _ i+1 i+1
Reeves Iivy = Vit H T - 399 7.66
: vi. " Vf.
i i
. T ,
Unsymmetric : (gi-Hizi)ii :
Variable H. , = H. + 580 9.67
Metric 2 i+l . T
Si %3
Fletcher- ' (Hixi) (Hixi)T iiijT
Powell- Hiyy = Hy - T T 2015 32.24
Daviden X-l Hlx-l §-i Zl
Steepest ‘ - ' ' .
Descent Hy = 1 4141 57'$3

In the majority of the methods, Hp=I, and H. is being reset
to HO after every n-1, or n, or n+l steps.
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t

The reader should be cautioned not to interpret
these results in a universal manner. They only mean
that for the particular type of problem under consider-
ation, the Newton-Raphson technique proved to be the
most effective. For a different problem, the results
may be different. '

5.190 Conclusion

It was demonstrated that Popov's or Jury and Lee's
stability criteria could be reformulated and combined with
a nonlinear programming technique in order to.generate an
algorithm for digital computer, real-time control of non-
linear processes. The computing times in the simulated
cases,‘turned to be quite small; less than 2 seconds in
the case of Popov's criterion, and about 5 seconds in the
case of Jury and Lee's. It is easy to see that the same

. algorithm may readily be applied to higher order systems.

It would of course involve more variables and more comput-
ing time. Thi® aspect should be investigated in more
detail in future studies. There 'is no restriction whatso-
ever on the performance criterion to be used.

The algorithm proposed, should be applied to other
kinds of nonlinear process control systems and actually
implemented in real-time, as a natural extension of this

study. -
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6. .Conclusions

It was demonstrated by the simulations performed
that optimal estimation-control techniques can be applied
to antenna tracking systems. Using the optimal estimator-
controller configuration, the system errors are estimated
and proper correction in the controller is performed. As
‘a result, at least under ideal conditions, a much smaller
pointing error is obtained. In the simulation of the tele-
scopic tracker, the ratio between the autotrack and the
optimal estimator-controller error was 20 to 40. In the
simulation of the 30 ft antenna, the ratio was up to 850
for the simulated Mars mission. In the near Earth Trajec-
tory’ simulation 200 N.M. circular orbit with the 40 ft
antenna a stéady state pointing error of 0.001 to 0.004
degrees was achieved. Present standards for near-Earth

missions are approximately ten times higher.

It was shown that insertion of certain types of
nonlinearities in the contrdl loop of the tracking system
causes instability. It is also a fact that nonlinearities
are inherent in the actual tracking systems, as the 40 ft
antenna system. It was further shown that using the math-
ematical programming approach the optimal control signal
can be synthesized, taking into account the existing non-
- linearities as they are, without resorting to approximate

linearizations.
Further work is recommended in the following areas:

1. Work out actual implementation of optimal
' estimator-controller, in real-time, connecting
specific computers to specific tracking

systems.



Continue investigation of actual implementation

of nonlinear synthesis.

Apply the same methods to a wider area of dif-
ferent systems. One possible area of immediate
interest would be optical tracking systems.



MEMOBANDUM 7

APPLICATION OF GPTIMUM ESTIMATION AND CONTROL
THEORY TO SATELLITE TRACKING PROBLEMS

I INTRODUCTION

The purpose of this memorandum is to derive optimum (approximately)
estimation and control techniques for the satellite tracking probiem.
The problem is nonlinear, as will become apparent in subsequent sections.
Some prcliminary studies are described in Refs. 1 and 2.* The present

study has resulted in the development of a digital computer program that

<> implements the operation of the optimal estimator and controller in con-

junction with the satellite tracking system.

A solution to the problem can be obtained by solving the estimation
and control portions separately. Since the satellite tracking problem
is nonlinear, the assumption that the estimation and control portions
scparate may not be optimal in the strictest sense;3 however, since the
estimation and control porjions are weakly coupled (as will be seen in

subsequent sections), the assumption of separation is quite reasonable.

~—

. The estimaﬁon, which grnerates an optimum estimate of the present
state of the system (satellite and antenna control system), is derived
in Sec. III. The estimation problem 1s solved by employing the extended
Kalman filter, which necessitates the linearization of the satellite

equations and the measurement equations.

The estimate of the system state is then employed in the controller
to compute the optimum control with respect to the given performance
criterion. The control problem is solved in Sec. IV by making the ap-

propriate linearization and applying some rew results in the theory of

Jinear optimal control.

* References arc listed at the end of the memorandum.
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IT PROBLEM FORMULATION

Figure 1 is a block diagram of the satellite tracking system. The

mathematical models for the various parts of the system are given below.
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TA-5578-10
FIG. 1 SATELLITE TRACKING SYSTEM
A. SATELLITE*
,Le x 1
P % = - <
1, rf— '
;L¢x2
3i"2 = - e— ,
e 3
r¢
/// #ex3 ' .
¥y, = - : ' (1)
¢ 3 - )
rt
wvhere '
1
r, = (x"; + xg + x% )/z )
e e e

]
The term “satellite” does not uecessarily mean a near-carth aatellite; it could, for instance, refer to
8 deep-space probe.
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#, = the product of the universal gravitational
constant and the mass of the earth,

X = the position coordinates of the satellite
with respect to an carth-centered Carte-
sian coordinate system. (The 3, axis is
coincident with the carth’'s polar axis,

and the 1, and 2, axes lie in the equatorial
planc, completing a right-handed orthogonal
set. )

It should be noted that the above differential cquations (1) mercly give -
an approximate description of the motion of the satellite, and are uscd
.only to obtain the solutions to the estimation and control portions of
the problem. The actual* trajectory of the satellite is gencrated by a
more exact computer program model developed at NASA Ames Rcseuréh Center,

Mountain View, California.

The differential equations (1) can be put into state variable form.

upon definition of the following variables:

al = X, ,
¢
o = X
- 2 .2t !
.. a3 = 13 ’ -
S~ '3
a, = x, ,
[4
o, = i, ,
. €
L e = ox, . (2)
[ 4 ——
Combining Egs. (1) and (2) yields : B -
Ty = 0y
a2 = OLS ,
d, = a,

*

The term E

“actual™ refers to the trajectory ta be teacked by the antennn in the computer symudation,
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N |
(14 ® ; ,
r
L4
. N'e“?
¢4 =
S 3 ’
r
L4
R _#'ea:!
a, = , (3_)
r3
e
where
%4
- 2 2 2y”2
r, = (o] + a; + ag) .
After defining the six-dimcnsional state vector of the satellite as
O:l
g,o= | , (4)
) (1.6
the differential equations (3) can be rewritten concisely as
° x, = f(x,) , (5)
where f(x ) is a six-dimensional vector function of x, as given by
Eqs. (3). '

Equation (5) is a nonlinear differential equation; however, 1in
order to take advantage of certain results in the theory of linear
estimation and control, it is neccessary to lincarize this cquation.

This concept will be clarified in Secs. TII and IV. Lincarization of
Eq. (5) is achieved by considering x, to be composed of some nominal
. - . . ~
trajectory x° and a perturbation {rom the nominal x
c K [
= o ~
X, = or, 0t X, * (6)

Upon expanding Eq. (5) in o Taylor scries about x° and neglecting sccond

and higher-order terms, the linecar perturbation equation is found to he:

"

Sy, . (7)
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where

.
y(x2) —
A Ax Ox
‘ lo J xo
< [
0 0 0
0 0 0
0 0 0
2 _ 2 _ 42
Bx0) M, (207 - 0y - ay) 3, 0% S
x = USEE———
[ 4
r? : r rs
gy 2 2 2
S 0yt p, (205 - af - a3) S, 00
.S .5 .5
[ 4 (4
! y 2 - 2 - 2
3, 0,0 3u, 0, p, (205 - af - ag)
5 5 .5
€ € L4
05

0

(8)

Since the problem is to be simulated on a digital computer, it is

essential to convert the differential ecquation (7) intoe an equivalent

difference equation. This can ve done by noting that the time deriva-

tive 1s approximately given by

N 3 T k) - X (k- 1)
x (k- 1) = Iy
or
F k) = X (k1) e ¥k - DA
where |

X (kD) s defined us ¥ (k) and At is the Lime

7-9
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‘Substituting Lg. (7) itnto (9) gives

X (k) = A1+ Hak - DAY (k- 1) (10)
vhere the transition matrix ts given by

¢ (k- 1) = I+ 3[xg(ie - 1))Ae . ()

Since Eq. (10) is only an approximate mathematical model of the
satellite motion, a random forcing term will be included as follows in

order to account for the imprecise nature of this model:

F k) = 00k - DX (k- 1)+ Tk - Dw (k21D (12)
where
0 0 07 [, (& - 1)
: 1
0 0 0
0 0 0
re-1) = I = , w ik -1) = k -1)
! . 1 0 0 x PR
0 1 0 :
- 0o 0 1 v (k- 1)
L— - ol 3 —
"It is assumed that the random forcing term wx(k - 1) is white* gaussian
noise with zero mean and covariance Qx(k -1) = E[wx(k - l)wr(k - 1.

B. ANTENNA CONTROL SYSTEM

The antenna control system consists of two channels—eclevation and
azimuth, The elevation chdnnel, which includes the antenna dynamics, is
illustrated schematically in Fig. 2; the azimuth channel has a similar
configuration. In this study, the analysis is carried through for an
electric drive; a hydraulic drive could be considered in an analogous

manner,

.
The statement that a random quantity z is white 1nplxc< that E[l(l)l G )] =0 for ¢ # J, i.6., z i
uncorrelated for different sample tlmes. . .
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FIG. 2 SCHEMATIC DIAGRAM OF ANTENNA CONTROL SYSTEM (Elevotion Channel)

It is assumed that the elevation channel is linear

small signals) and 1s described by the following:

L[If + Rllf

E

e J-é)n + fnq:)n * C»(

.qugl; ) fb(ﬁ;b ¥ Cb("bb - d)d)fN2 () -
J d) + fd b(

control variable

field inductance

field resistance

field current

field proportionality constant
generator voliage

motor i1nductance

motor resistance

motor current
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1

k“ = motor proportionality constant !

T = motor torque
L]
J = moment of inertia of wotor
n : |
f, = damping of wotor |
c, = gear spring constant of motor {referred to the motor shafl)
. : o !
N = pgear ratio
¢ = motor angle .
a
Jb = moment of inertia of antenna base
f, = damping of antcuna- base
¢, = spring constant of antenna
¢b = angle of antcnna base or angle of antenna’s
mechanical axis
J, = moment of inertia of antenna dish
fq = damping of antenna dish ;
¢, = angle of antenna dish or angle of antcnna’s
electrical axis
ng = random disturbance (noise) due to wind gusts,

1t should be noted that this model of the antenna considers the first

bending mode. For large antennas this effect is quite significant.

It has been shown® that the power spectral density of the wind dis-

turbance gy is approximately equal to
. .

~— ;\ndi'(s) =

“s? 4 g2
S Gd)

The noise h¢ can be constdereda as the output of a filter having the

transfer function
.'/‘ ’ . ]

s +a -
¢

and subjected to white noise o where 5w¢(s): 1. This step is neces-
sary in order to put the problem in the appropriate form for the relevant

theory. In the time dowain, n, and wy are related by

, Ry = @y +ow - ‘ (]4)
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The differential eguations (13) and (11) can be put into state

variable form by defining the following variables:

a = ]

7 /
g e I,
a9 = (f)n ~
o, = 4',m
Gy = Dy
Qyy = ‘f;b
Ay3 = Py
Yy * ‘i’d
@y = g .- (15)

Upon denoting the nine-dimensigpal state vector of the elevation channel

as .
— .
ro = |- . | -~ (16)
%5

—

the differential equations (13) and (14) can be rewritten conciscely as

re = Farg t Dguy + Gy, (7)

‘
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wvhere

v R -
A 0 0 0 0 0 0 0 0
f
kR, b,
—_ 0 -— 0 0 0 0 0
Ll L,
0 0 0 | 0 0 0 0 0
l\m Cm -{m C,IIV t
0 -— - .- - 0 0 0 0
g I J
F¢ = '
0 0 0 0 0 | 4'() 0 0
an _/\(2c"l t e, £ cy
0 0 -— 0 - = -— 0 0
J, Jy J,
0 0 0 0 0 0 | 0
€y ¢y fa 1
0 0 0 0 - 0 -—= -— —
) Jq Jq Iy g
0 0 0 0 0 0 0 0 -q
. .
-1 7 B - -
— L/ 0
-0
Dd) = N {;d) = .
. 0
. 0 L1

The digital computer simalation ot the problem necessitates the convei-
s1on of the differcntial equation (17) into an equivalent dilference
equation. This can be accomplished by solving Eq. (17) woth an arbi-

trary initial condition r‘,(t'):

’ ! [ t > .'
ra(t) = exp [Flf,(t ) lr.‘.‘( t') + |exp IF.01 D G
. . ; My

.' . . ' )
+ '!; exp “'é(l l)l('¢u%ﬁ(_,)(h . o H‘{)‘
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With ¢ = kAt and (' = (kb - DA, ana with gy, and wy, assumed Lo be con-
stant over the time interval [(k - )AL, kALY, Fig. (18) becomes

rglk) = @ylk = Drglk = 1)+ Ayl = Dug(k = 1) < Pk - Duglk = 1),

(19)
wvhere
: o F¢‘ (Ae)?
Ok - 1) = @y = exp [FA] = Z ~
kAt
Bylk = 1) = By = [ 70 exp [Fytkte - 7)1diD,
~1) o
Fl' . (At)i*‘l
bl ¢
= [z ———e e et D¢ ,
B i=0 (i + 1)}!
, kate
r¢(k -.1) = r¢ i exp [F¢(kAt - T)]d7G¢
-1)at -
o Fi « (Ar)i*!
i igo (i + 1) Co ' (20)

and r¢(kAt) 1s defined as r¢fi).

,  The azimutg\éhapnel has the same form as the elcvation channel, which
is described by the differential equation (17). The only difference be-
tween the two channels is that the moments of inertia of the antenna (in
azimuth) are functions of the elevation angles. Since the rates of

change tor these moments ol ﬁnertia are slow with respect to the control
system time constants, it will be assumed that they can be treated as
time-varying functions. Hence, the azimuth channel can be described by

a differential equation that is analogous to Eq. (17):

;0 = Fo(t)rg + D(}UO + Ggwo , (2])
where
] Lye
e - ) (22)
oy



‘

is the ninc-dimensional state vector of the azimuth channel and 1s

entirely analogous to rooas defived by Egs. (15) and (16). The matrvices
Fo(t), Dy, and G, have the tacntical torm of the corresponding matrices
delined in Eq. (17), the time dependence in F (1) being doe to the tine-

varying moments of inertia

The differential cquation (21) can be converted into an equivalent
difference equation by assuming that F,, in addition to u, and wgy, 1s

constant over the interval [(k - DAt, kOt]:

rgk) = Qg(k - Drglk - 1) + Dytk = Duglk = 1) + Dplk - Dwglk - 1),

(23}
where
| ® Fi(k - 1) * (8¢)
O, (k - = =
of 1) i=0 i
[m Fi(k - 1) - (Am”]
A - = | 2 )]
| olk = 1) Q=0 (i +1)! Do
| ° Filk - 1) + (Ar)itd
Fotk -1) = | = Gg (24)
(=0 (¢ +.1)! :

and ra(kAt) is defined as ry(k).

Hence, the antenna control system (elevation and azimuth channels)

is described by

r(k) = 45(k_- l)rkk - 1) + A'(k - Du(k - 1) + F}(k - l)wr(k -1 -
‘ = (25)

-

where . - i

- ro(k - 17
rk - 1) - ["’ ]
ra(k - l)

0

0 Gk - 1)



. Fug(k - 1)
ulk - 1) =
h“O(k - 1)
F‘Ad) 0
Ak -1) =
L0 Bptk - 1)
w¢(k - 1)
w (k- 1) = (
‘ L vglk - 1) ]
.-r\qs 0
Ck -1 =
|0 Ttk - 1)
In addition, it is assumed that w_(k -'1) is white gaussian noise

“with zero mean and covariance Q. (k - 1) = E[wr(k - 1)wZ(k - 1)). The
matrices @ , Ar, and rr can be computed with an arbitrary degree of
accuracy by taking a suitably large (but finite) number of terms in the

series expansions of Egs. (20) and (24).

C. MEASUREMENT SYSTEM

The state of the satellige tracking system, which consists of the
~satellite (x,) and the antenna control system (r), may be defined by

the 24-dimensional vector

o,
x, . . . .
a4 = = . . (26)
- r . ’
- Uoy

The measurement system, which includes the monopulse receiver*, is

defined by the 15-dimensional measurement vector

® .
The monopulse receiver end its associated demodulating eqummrnt measures the elevation and azimuth
components of the difference between the angle of the antenna’s electrical axis and the satellite unglt.
It ia essumed that thia difference is su)tnbly small so that the operstion of thr mmupulsr receiver

is linear,

. . 713



alz(k)
alG(k)

ﬂ(k) i : + w(k) = hla(r), k) + v(k) ., (27)
| 4y ()

b, (k) - &, la(k),k]
6,(k) = 6, la(k), k]

p, la(k), k) i
where
¢, la(k), k) = elevation angle of satellite
6, la(k), k] = azimuth angle of satellite
p,la(k), k] = range rate of satellite
Gy(k) = e k), O,(k) = 0y, (k)

v(k) = measurement noise, which is assumed
© © to be a white gaussian random pro-
cess with zero mean and covariance

R(k) = Elv(k)vT(k)].

The--expressions ¢%, Gg,and b, (which are time-varying, nonlinear func-
tions) are derived in Appendix A and given by>Eqs. (A-6), (A-7), and
(A-9), respectively. Figures A-1, A-2, and A-3 in Appendix A illus-
trate the geometry of the satellite tracking problem. It should be
pointed out that this study considers the relative motion of the antenna

with respect to the satellite as the earth rotates on its axis.

Since the measurement equation (27) is nonlinear, it is necessary,
as before, to perform a linearization.  Consider ¢ to be composed of

. . - . - ~
some nominal trajectory a° and a perturbation from the nominal o:

0 = a° + @ . 4 . (28)
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Similarly, let f be given as lollows:

B o B

(29)

Expanding Eq. (27) in a Taylor series about a® and neglecting second and

higher-order terms,

where

From Egs.

Hloe (k) k) S Hk) =

where the a,, b.

" Egs.

D.

the

B(k)

B (k)

Hlao (k), k]

(26) and (27),

B |
Ii O
o L
(6 % 6) ! (6% 6) | (6 % 12)
T [ R
[ |
[ |
| ——
e s L6 OH6x3))
aya;a; 000 Lo 0100 1o .0
- by b, b, 0 0 0 !0 .00 0100
[
€, ¢y ¢y dy dy dy ’ 0 . ! 0

;€ and d; are derived in

is

Pinear perturbation equation
= Hlao (k) RIT(R) + w(k)

1

hlae (k) k] ,

ch [Ohi
T du . ) laaj
a’ (k),k ao(k),k

it can be demonstrated that

(B-5) through (B-8).

ESTIMATGR AND CONTROLLER

(30)

a® (k),k

(31)

Appendix i3 and given by

The function of the estimator is to generate an optimum cstimalce

of the present state @ from the mcasurement 3, which is corrupted by

noise,

This estimate is then employed in the controller to compute the

optimum control with respect to the given performance criterion.  The

estimation and control equations ave obtained in Sces. Llliand 1V, -

respectively,

4%

.1
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ITI ESTIMATION EQUATIONS

In this section the estimation problem is solved by employing the
extended Kalman filter. This concept is an application to nonlincar
systems of work done by Kalman in lincar estimation theory.> The deri-
vation of the extended (or linearized) Kalman filter is presented :n
Memorandum 6% and heuce will not be repeated here. This approach has
been successfully applied at SRI to missile tracking problems, including

the identification of unknown aerodynamic parameters. '

From Eqs. (12) and (25), the random disturbunce acting upon the

satellite tracking system is given by the five-dimensional vector

v (k)
- wlk) = ,

v (k)

which is white gayssian noise with
~ Elw(k)] = 0 ,
Q, (k) 0
Elw(l)wT(k)] = Qk) =
- ' 0 Q,(k)

‘The measurement noise v(k).has been defined in Eq. (27). The 1nitial

state ¢(0) is a gaussian random variable with

Ela(0)] = a(0/0)

E[{a(0) - 2(0/0)}{a(0) - &(0/0)}T) = P(0/0)

Furthermore, it is assumed that w(k), v(k), and 2{(0) are uncorrelated.



~_

The resulting estimation equations can be considered as consisting

of two parts: prediction and correction (or regression).®*

A. PREDICTION

Given the estimate of the system state at the k-1lth instant
A
fa(k - 1/k - 1)), the predicted system state for the kth instant
[&(k/k - 1)) is obtained from Egs. (9) and (25):

1t

A %, (k/k-1) Rk -1k - 1) ¢ fIE (k- 1k - 100 LY
a(k/k - 1) | (32)
F(k/k - 1) &, (k-1)r(k-1/k-1) + A (k-1)u(k-1)

with the covariance of the error in this prediction given by

< P(k/Ek-1) = @(k-1)Pk-1/k-1)0T(k-1) + Tk -1)Qk -1 T(k~-1)

(33)

where

r 0
Mk - 1) = ,
. L0 Ttk -1
i o (k- 1) 0
Ok - 1) =

0 O, (k- 1)

and ® (k - 1) is obtained from Eqs. (7), (8), and (11) by linearizationv;
about the estimate &(k - 1/k - 1) lor Qc(k - 1/k .- l)];;j.e., '

—

®, (k- 1) = T +3[3 (k- 1/k - 1))

It should be noted that w(k - 1) = 0 in Eq. (32), since Elw(k - 1)) = 0.

* The esllo;ing notation will be employed:
S e ity & z[am/B(,)\). Cee BULEG DL L (0)]
peizj) 2 ellacir- acitlaco-ac/in T8 Gy. .0 B, G- 1), ..., 0] .

These expectations sre conditinned on the previous measurements and inputs.

1 The nonlinear differential equation for x_ may be integrated by e more accurate method if necessary. -
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B. CORRECTION

A R o

The prediction a{k/k - 1) is then “corrccted” by using the actual
measurement at thg kth instant [B(k)] and the predicted measurement for
the kth instant [B(k/k - 1)), which is obtained from Eq. (27):

A .
Blk/k - 1) = hlatk/k - 1), k] . (34)

It should be noted that v(k) = 0 in Eq. (34), since Elv(k)] = 0.

Hence, the estimate of the system state at the kth instant is given

by
A A ) h )
alk/k) = a(k/k - 1) + W(R) (k) - Blk/k - 1)), (35)
where the weighting matrix
Wk) = P(k/k - DHTGR)IRGE) + HGOP(/E - DET)T™Y , (36)

and H(k) is obtained from Egqs. (30) and (31) by linecarization about the
A .
prediction al(k/k - 1); i.e.,

~
a ®
H(k) = H[Q(k/k - 1), k] = —'1 .
— da

A
al(k/k-1), &k

A
The covariance of the error in the estimate a(k/k) is

P(k/k)

(7 -WRYH(EYIP(Kk/k - 1)

"

P(k/k =1) -PCe/k - VI T(R) [RCK) + HUOPCR ke - 1) H )Y HOUDP (R /R - 1)
S (37)

The extended Kalman filter [Egs. (32) through (37)]. which 1=
depicted in Fig. 3, gives the solution to the estimation problem.

Obviously, this solution can be readily implemented on a digital computer.

However, since the overall system is not lincar, the solution 1s

- * From Eqs. (13-5) thruugh (H-8), vogether with Eq. (31);

¢ T A
it i3 obvious that H(k} is ecrually eveluated at the prediction ;’(ﬁ/k - 1),

7-18



Bik) . & (k/k)
— > Wik)
A u(k)
B (k7k-1) {}
EQ (34) EQ (32)

TA-5578-12

FIG. 3 BLOCK DIAGRAM OF THE ESTIMATOR

suboptimal. Intuitively, this approach seems to be quite reasonable,
but its validity has not been rigorously established. The extent to
which this solution to the estimation problem differs frem the optimum
is mainly dependent upon the accuracy of the linearization of Eq. (5),

the differential equation for x_, and of Eq. (27), the measurcment

- equation. There are many questions pertaining to this subject that

remain to be answered.

It should be noted that in the derivation of the extended Kalman
filter, the nonlinear equations (5) and (27) were used in Egs. (32) and
(34) to obtain the predicted state and the bredicLed measurement. The
linearization of Eqs. (5) and (27), in order to obtain ¢ _and H, is only
employed to calculate the ®ovariance matrices P and the weighting

~

matrix W,

—~—
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IV CONTROL EQUATIONS

In this section the control problem 1s solved by application of

linear optimal control theory. Consider the performance criterion

L4
J. = E L;O{[qsb(k) ~p, (k)1 [0, (k) -6, U1 + ylud (k) +u5(k)}}]

(38)

»

This performance criterion corresponds to tracking for the purpose of
gathering satellite position data. The cost associated with control
(where v > 0) is essential in order to guarantee that uy and uy do not
become too large, which, in turn, could cause certain state variables of
the antenna control system to exceed their pcrmissibles range of values
(e.g., the motor speed and torgue are bounded because of physical con-
siderations). However, the actual performance cf the satellite tracking

system is determined by the first two terms in Fq. (38).

l
E-]

To use the results of linear optimal control theory, it is necessary
for the performance criterion J to be quadrétic in the system state 0.
However, this condition is not satisfied, since ¢, and 93 are nonlinear
functions of o (or x,), as shown by Eqs. (A-6) and (A-7). The criterion
J. can be put into the appropriate form by linearization of ¢ (k) about
the estimate a(k/k) [or Qe(k/k)]. After writing Eqs. (A-6) and (A-7) as
Taylor series expansions‘aboqt Qe(k/k) and neglecting second and higher-

order terms,

A ) ‘o~
¢ (k) = @ (k/k) + aT(k) X (k)

A .
6,(k) 6,(k/k) + bT(k) T (k) : (39)

wvhere

i

x (k) X (k/k) 4 F (k) | L a0)
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A A
b SkIKY X (kKD K]

A A
O (k/k) = Os[x'(k/k),k] ,
(-a,' r—b]'
| -a, -b2
-a ) ’ -b
k) = 3 . b(k) = 3 ,
a(k) 0 | b(k) 0
0
5 [ 0

TR kK Lk TV

in which the e, and b, are given by Eqs. (B-5) and (B-6).

The state of the antenna control system can be defined by the

26-dimensional vector

o = s , ’ (41)

- ‘ A A
which centains @ (with z_ lincarized) and is augmented by ¢  and 0.
The dynamics of ?t and r are given by %qs. (l%) and (25), respectively;

there are no dynamics associated with ¢s and 0‘. Therefore,

alk + 1) = Gk)alk) + Ak)u(k) + Tw(k) (42)

A A
* It should be noted that because of the nonlinearity of Eqs. (A-6) and (A-7), ¢ and &, are not
optimal estimates in the usval sense.
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where

® (k) 0 ]
k) =
0 b (k)|
_ I 0 7
O (k) =
0 & (k)
"0
Blk) =
| B, (k)
Ple) = I, 0
[ 0 T (k)]

R ]

H

O (k) = I+ 3[2 (k/k)1D¢

Substituting Eq. (39) into Eq. (38) and rewriting J according to

the standard formulation gives

. M
J = E [;go QgT(k)A(k)g(k) +-uT(k)B(k)u(k)}] , (43)
where e
24 0 ‘
B(k) = B =
. 0 ¥
: Al(k) Aa(k)
A(k) = ’

A:(k) A2
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in which Al(k) is 8 x 8; ﬂé is 18 x 18; As(k) is 8 x 18; and A(k) is

symmetric and positive scmideflinite,

A (k) =

After comparing Eq.

(38) with
Eq. (43), it is a straightforward matter to determine A(k):

r l -f_T(k) n
I |
‘ -bT(k)
____________
| .
 -a (k) -b(k) | alk)aT(k) + b(k)LT(k)
S l o |
| l | |
N | | _ i
| I | ]
(8x4) | -a(k) | (8x8) | -b(k) 1 (8x4)
0 , 7
"0 - Q .
1
0
A2 = 2D :
‘o
O
L "0

(thé 5th and l4th elements on the diagonal of A, are equal to one).

The design objective is to find the sequence of controls

[w(0), u(1)

?

Cu(i)

that minimize J. The control cquations will be derived by applying

some results obtained by Larson;® this work is an extension of results

in linear optimal control theory.3
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The optimal control u(k) is given by
: A
u(k) = -K(k)a(k/k) , (44)

where the gain matrix K(k) is denoted by

K(k) = B+ AT(kIP (k + DIAGKR)ITIATUIP ( + 1)O(R)
(45)

and P, satisfies the discrete Riccati equation

P(k) = A(k)+ @T(k)P (k +1)@(k)

~®T(k)P (k + 1)AK) B+ AT(R)P (k + 1)AK) ) TAT(R)P, (k + 1) @(k)
02 k<M (46)
P (M) = A(M). '

_ For convenience, P_(k) will be rewritten in a form entirely
analogous to A(k):
P, (k) P, (k)
P (k) -
T
P3(k3 P, (k)

~.

where Pc(k) is symmetric and'positive semidefinite.

Upon performance of the indicated matrix multiplications, the

optimal control in Eq. (44) becomes

e

(k) = -[B + AT(RP, (b + 1A, ()17IATRIPT (k + 1)@ (k)2 (k/k)

<[B + AT(RIP, (k + 1)A ())TIATURIP, (k + 1)@, ()P (k/K)
" ‘ (47)

where
A

,(k/k)|

A S ‘ e
x(k/k) = 6, (k/k) ) (48) .«

L
X (k/R) |
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The Riceati equation (36) can be partitioned into separate equations lor

Pl’ r,, and Py

Pl(k) A (k) d’{(k)l’l(k DO k)

“OTRIPT(E + DA B« ATGOP,(k + DA R TBIP (v Db (k)
0k <M (19
PN = A (D,

Py(k) = A, + OT(IP,(k + 1) ® (k)

ST ()P, (k v DO (R)IB + NPy (k + DA GTIAT GOl (kv 1) (k)
' ' 0< k<M (50,

P, = A,

PS(k) = Ayk) + (DI(L')PS(L' + D@ k)

C®T(RIP,(k + DA () (B ATROP,(k + DA (B)] TGP, (e + 1)@ (k)
' 0<k<h (5D

P = A

Equation (50) can be solved for P, independently of Eqs. (49) and
(51). Hence, the dimension of the Riccati equation to be solved has
been reduced from 26 % 26 Lo 18 % 18. It should be noted that Eq. (50)
is the Ricatti equation for the antenna control system of Fq. (25) with

: . . .
the performance criterion

—

. .
E Eg; {rT(k)A,r(k) + uT(k)Bu(k)}]

Once P, has been found, it is substituted into Eq. (51), which is a
linear cquation i1n P, (of dipmension 8 X 18) and very casy to solve.
Since l’l does not enter into the control equation (47) or the calculation

of P, and P,, it is not necessary to solve Eq. (49).- |

Thus, the computational requirements havc.bcen reduced markedly.
Instead of sclving Eq. (16) for Pttt will suffice to solve Fq.o (50)
for P, and calculate Py from Eq. (S1).  The optimal control u is then
. obtained by subsLil,ulingAP: and Py ointo Eq. (47).  Equations (47), (50),

and (51), together with a, give the solution to the control problem,
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A.  STEADY-STATE APPROXIMATION

Suppose that the antenna control system of Eq. (25) is stationary

(i.e., the matrices A and Pr are constant), which is equivalent

o
to assuming that Fy of Eq. (21) is constant. This assumption is fairly
reasonable over 2 substantial time interval, since the rate of change
of Fg is slow with respect to the control system time constants.
Additionally, it will be assumed that the summation in the performance
criterion J of Eq. (43) is over an infinite time interval (i.e., M = ©),
This assumption is quite reasonable, since the interval of time during
which the antenna is tracking the satellite will be appreciably larger
than the control system time constants. With these two assumptions,

computation of the optimal control u{k) is greatly simplified, as will

be shown below. Formulation of the control problem in this manner will

4 »

be referred to as the '“steady-state approximation.’

The Riccati equation (50) becomes

P, = A

) + o’p, @ - oTp A (B + ATP A ) '0TR 0. (52)

2
The-above is a nonlinear algebraic equation in the steady-state matrix
P,. In general, Eq. (52) is very difficult to solve. The most straight-
forward way to obtain‘ﬁ2 is by the iterative solution of Eq. (50). That.
is, let Py(k + 1) be some positive definite matrix and then solve

Eq. (50) iteratively until it converges to a steady-state solution.

Instead of solving Eq. (51) for P, , consider the following
quantity from the first term of Eq. (47):

PT(k + 1)0, (R)R(K/E) . (53)

It will be shown that this approach simplifies the computation of the

optimal control u(k): From Eq. (40) it can be seen that

A .
Y. (k/R) = 0
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" hence, Eq. (48) yields )
- A -
¢ (k/k)
A
0 (k/k)
A .
x(k/k) = 0 (54)
L 0
From Eqs. (42) and (54), it follows that
®, (k)2 (k/k) 2k 1) (55)

In ef}ect, the linearization in Egs. (39) and (40) enables the left-hand
side of Eq. (55) to be rewritten as

®,(K)2(k/k) = Z(k + 1/k + 1) (56)
Transposing FEq. (51) and multiplying by ﬁ(k/k) yields
F -]
PTCRIECR/K) = ATCOR(k/K) + ©TPT(k « 1)O, (k)3 (k/k)
TP, (B + OTP,A 1TIATPT(k + 1), (k)Y (k/k)
(57)
. For convenience, define -
."/l
B A —
(k) = P (k)x(k/k) (58)
Hence, substitution of Eqs. (56) and (38) into Eq. (57) gives.
k) = ATZ(k/K) + &Mk + 1)
SOTP AL TR v ATR A YT ATk 1) (59)

-



From Eqs. (43) and {54), it can be shown that

0
A
-, (k/k)
0

AT(R)E(R/R) = : (60)

| 0

A A
(-4, and -&, are the 5th and l4th elements, respectively).

From Eqs. (55) and (56), it can be seen that the 18-dimensional

vector in Eq. (60) isceffectivcly constant. Therefore, the steady-state

solution to Eq. (59) is given by

~

1"

7 (1 - W74l 2k/k) (61)

. where

L]
"«

ol - T T - IAT
= @ <brP2A’[B + ArAPzAr] AT . (62)
If the state r(k) were known exactly, ¥ would correspond to the closed-
loop transition matrix of the antenna control system. For a control law
that is asymptotically stable, lki(W)‘< 1, where the A (¥) are the
eigenvalues of W. With this condition satisfied it can be demonstrated

“that the inverse of [I - ¥] exists.

From Eqs. (56) and (58), it can be scen that the expression in

Eq. (53) is equivalent to 7; thercfore, the optimal control is
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i

w(k) = =B+ ATP,A )70 3
-3+ AT, A 1NN 0 P k/k) (63)

As the succeeding estimates of the satellite state (Qe) are computed,
_%s dnd,gs will actually change. Thus, Egs. (60) und (61) show that it
is necessary to update 7m at cach discrete time and then substitute it
into the first term of Eq. (63). Since &s and 65 {(the estimates of the
elevation and azimuth angles of the satellite) change slowly with respect
to the control system time constants, use of the steady-state solution
to compute the optimal control is quite reasonable. In addition, as
successive estimates of the antenna control system state (f) are calcu-
lated, they are substituted into the sccond term of Eq. (63). Equations
L/(S?), (61), and (63), together with Q, give the solution to the control

problem under the steady-state approximation.

As a further refinement to this approximation, the time-varying
nature of Fy can be taken into account as follows: Update Fy period-
ically and recalculate @ _, & , and ', of Eq. (25). With these new
mitrices, P, [the solution to Eq. (52)] and n [the solution to Eq. (61)]
are recomputed. Finally, u is obtained from Eq. (63) by substituting
thesc updated matrices. Jhus, a nonstationary problem is solved as a
series of different, stationary problems. It 1s not.necessary»to repeat
this procedure at every discrete instant kAt, since the rate of change

of Fg is slow with respect to the control system time constants.

The solutions to the control problem can be readily implemented on
a digital computer. Although these solutions are suboptimal, the
approach used seems quite rcasonable. The validity of these results

remains to be investigated.
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YV  CONCLUSTON

The digital computer program for implementation of the operation of

the (approximately) optimal cstimator and controller in conjunction with

the satellite tracking systew has been written and is now functioning
properly. The program has been organized so that it will be sufficiently

general and flexible enough for the proposed applications.

This program is a valuable study tool for the investigation of
several important topics. Primarily, it will provide a way of evaluat-
ing existing tracking techniques; i.e., it will be a yardstick for

comparing system performance.

An important question relutes to the linearizations employed in
Secs. TII and 1V in order to obtain solutions to the estimation and
control problems. Since the satellite tracking problem is nonlincar,
the solutions obtained in this manner are suboptimal. Although this
approach 1s intuitively reasonable, its validity has not becen rigorously
established. The extent to which these solutions differ {rom the optimum

will be studied b computer simulations in conjunction with analytical

investigations.

T
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APPENDIX A

DETERMINATION OF ¢, 6., P,

s!?

The eduations of motion of the satellite, as givcﬁ by Eqs. (1) or
(3), are expressed in terms of an earth-centered Cartesian coordinate
system. However, the actual operation of the antenna control system is
in terms of radar coordinates—elevation, azimuth, and range. In fact,
the measurement system [Eq. (27)] observes the clevation and azimuth com-
ponents of the difference between the angle of the antenna’s electrical
axis and the satellite angle, in addition to the range rate of the

satellite.

p SATELLITE

TA-5578-13

FIG. A-1 GEOMETRY OF THE SATELLITE TRACKING PROBLEM

The geometry of the satellite tracking problem is illustrated in

Fig. A-1. The 1, and 2 axes, which lie in the equatorial plane of the

1-32

S



carth, and the 3 axis, which is corncident with the carth’s polar axis,
comprise an earth-centered Cartesian coordinate system.  The position of

the antcenna is given by the three-dimensional vector

Y1
y = Yy
Y3

In the 1 , 2 . 3 coordinate systen,
[ 4 € €

(¥, = R, cos ) cos (f2t + &)
y¢1 Yy, = R, cos ¢ sin (2t + 8) (A-1)
. }
Y3 = R, siny , :
\ e
where
R, = radius of the earth,
2 = anguler rate of rotation of the earth,
& = an arbitrary angle.
-0

The position of the satellite is given by the three-dimensional vector

~—

-

, 3, coordinatc system, x] consists of the x, defined in

In the 1, 2, ' .
Eqs. (1). Now, the vector from the antenna to the satellite is denoted

by
z = x' -y = z, . : (A 2)

Before proceeding any further, 1t is necessary to define certain

terminology that will be used:

* This study considers the relaiive motion of the sntenna with r

expect o the satellive as the esrth
rotates on its axis. '

\

s
N
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I3

Azimuth plane - plane tangent to the earth at the antenna
site; this plane 1s perpendicular Lo y

Zero-azimuth - perpendicular projection onto the azimuth
line. plane of a great circle passing through
the North Pole and the antenna site

Azimuth line - perpendicular projection of : onto the
azimuth plane '

Elevation - the angle between the azimuth line and z
angle @, : !
Azimuth - the angle between the zero-azimuth line
angle 6 and the azimuth line.

In the 1_, 2,, 3, coordinate system, Eq. (A-2) yields

2, 0= x, -y, . (A-3)

The expressions for the satecllite angles ¢, and 6, can be obtained from
Lqg. (A-3) by expressing z in terms of the 1 , 2 , 3 coordinate system
depicted in Fig. A-2. The 1

are related by the following two rotations (or orthogonal transformations):

r’

pr 2 3rand the 1, 2:' 3, coordinate systems

L 3e

TA-5578-14

FIG. A2 RELATION OF THE 1, 2, 3. AND
1, 2, 3, COORDINATE SYSTEMS
Vi TRANSFORMATION R,
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(J)  rotation about the 3_ axis by the angle 8t + 85 (2) rotation about
cdisplaced Y axis Canele -us . D s . . IV
the displaced 2 axis by the angle -y Tt can be scen that the 1 axis
1s perpendicular to the azimuth plane, while the 2, and 3, axes lie in
the azimuth plane and the 3 axis is coincident with the zero-azimuth

line. The resulting orthogonal transformation can be represented by

Ccos Y 0 sin cos (£t + d) sin (L2t + 0) O
R,,. = 0. 1 0 -sin (¢t + 8) cos (fit + &) O
" Lesin gt 00 cos @ 0 ' 0 )

r cos Y cos (Ut + 8) cos Y éip (e + 8) sin y
= -sin (§it + d) cos (fit + 5) -~ . 0 . (A-4)
|-sin ¢ cos (0t + d) =-sinyp sin ({It + 0) "cos ¢

Thus, 1in the ]r, 2r, 3r coordinate system, : |

z = Rrhze . : ' (A-5)

Inspection of Fig. A-3 enables one to readily determine ¢, and 0’, which
are given by !

z, -
r
P, = sin 1 T::l , ‘A'ﬁ)
F ]
\,“ 13' . .
6 = cos VT ——————— . (A-7)

vhere

%*

Finally, ¢, and 0, can bc.uxprcsscd in terms of the x,  and y, by sub-
stituting from hgs. (A-5) and (A-3). The x, are contained in the state

. L4
vector @ of Eq. (26) [see Eqs. (2)], and the y; arc known time-varying
[ 4

* It should be noted that the magnitude of s vector is independent of the coordinate system.

4T
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Z'r =y
\\\
~
\\
\\\
2 ZERO-AZIMUTH
LINE
®, !/’
0 5 3

v2r

TA-5578-15
FIG. A-3 DETERMINATION OF ¢_ AND 0,
functions [see Eqs. (A-1)]. Hence, the satellite elevation and azimuth
angles are’time-varying, nonlinear functions—-¢s(a(k),k] and Qs[a(k),k}.

-8
The range p,, the distance from the antenna to the satellite, is

given by

P T T
From Egs. (A-8) and (A-3),

p, = —— (A-9)

The x, and i; are contained in & of Eq. (26) [see Eqs. (2)), and the
€ . . . . . . .
y;, and y, are known time-varying functions (the ¥y, are readily obtained
e € C. ' 4 !
from Eqs. (A-1)).° Thus, the satellite range rate is a time-varying, non-

linear function—p, [a(k),k].
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APPENDIX B

[ dl

CALCULATION OF THE o , b, c

The matrices H(k) of Eq. (31) and a(k) and Q(kr) of Eqs. (39) con-
tain the partial derivatives of .., 05, and bs with respect to the elements

of o [or x,—~see Fgs. (2) and (4)]; i.e.,

: %, %, t
..a‘. = ax‘. = aai ”!_ (B"])
96, 90
~b. = = - . “(B-2
90, Bb‘
T En T (-3
E e .
—~ )
' a'O.s aps i :
d, = = , (B-4)
BOx aa3+i

for i = 1, 2, 3.

Applying the chain rule for differentiation to Egs. (A-S), (A-6),
and (A-7), one can express the terms in Eqs. (B-1) and (B-2) in the

compact form:

-"aluT : -a¢s/azl'—
oy | oo s, | (-5
s . -a, Lap'/azs
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where

9 ] Y )
‘2, (3, +#3) 71,
E¢s "erz3r
oz i ! ;
ey
' i
and
" b, 'aas/az)r
-b, = Rf/c 305/322 , (B-6)
_bBJ 30;/323
5
where
- 398
—_ = 0
azl
aes z3'
BT
r r
39, _zzr

The above results make use of the fact that

LAz 1 , ftor it =

Je 0 , Hdor i /j



and that the
to.azjr/azi

e
terms of the

From Eg.

terms in Egs.

element in the i
Finally, the aws/sz

r r
x, and y, by substitution from Eqs. (A-5) and (A-3).
[ 4

.

[

(A-11),

th h

row and j*'

column ol RZ/ corresponds
L4

and 303/321

can be expressed in

it is a straightforward matter to show that the

(B-3) and (B-4) arc given by

(x

i, &‘¢)1§i (x‘c i y’e)

(B-7)
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APPENDIX A
A SUMMARY OF SOME RESULTS FROM
LINEAR OPTIMAL ESTIMATION THEORY

The optimal estimation algorithm has been worked out,
in particular, for systems whose dynamics may be expressed
by a set of linear difference equations of the following

form:[l’s]
where
Xy = n-dimensional state vector at the discrete time
' instant t = tk
F
Wy = n-dimensional random noise vector at t = ty
¢(k,k-1) = nxn state transition matrix

Usually, most of the states of the system are not
directly measurable. The set of ‘physical entities that
are directly measurable, constitute the so called measure-
ment vector 8. In some particular cases; several compon-

ents of B may be identical with the corresponding state

variables.
It will be assumed that the measurement vector may

be expressed as a linear function of the state vector:

B = MO Xy * vy | ST



where

B, = m-dimensional measurement vector at t = tk

Vg = m-dimensional measurement noise vector at t = t,

H(k) = mxn measurement matrix at t = ty

It will be further assumed thét both Wy and v, are

uncorrelated white noise sequences and:

N

The mean E[Ek] = E[Kk] =0 for all k (A-3)

‘The covariance matrices E[EkﬁkT] = QkSkj for all k (A-4)
T = . -
E[_\Lk_\_r_k ] = Rkskj for all k (A-5)

o

where ék' is the Kronecker delta

~

Qk and Rk are non~negative definite (nxn) and (mxm)

matrices respectively.

The initial state x(o) is assumed to be a random

variable with the following statistics:

E[x(0)] =0 . (a-6)

E[x(0) x (0)] = P, -6



where

P0 is an nxn matrix.
Further, it is assumed that x(o) and Wi and vy are uncor-
related for all k.

The optimal estimation problem consists of establish-
ing an estimate of x, at t = tio denoted by Xy based
on the previous estimate Xx-1 and on the present measure-

ment B,, so that the error is minimized, i.e.,

-

. N S | i
Minimize J = E[(x) - x) (% - %] (A-8)

The optimal solution to this problem is the follow-
ing:[z-sl '

The optimal state estimate at t = ty is given by:

ol

Xy = ¢&(k,k-1) X1 * Kk [Ek - H(k) @(k,k—1)§k_1] | (A-9)

e
L

where K, is the so called weighting or gain matrix (of
dimension nxm in this case), and is given by the relation:

K, = P} H (k) [H(K) Py H'(K) + R.] (A-10)

where Pk is the covariance matrix (nxn) at time t = tk:



2~
l

= BI(x - x0 (5 - x)7) | (A-11)

and

=)
i

: - |
@(x,k-l).Pk_l o (k,k-1) + Q_; - (A-12)

The covariance matrix, Pk satisfies .the matrix Riccati

equation:

.m v L 1 ' T T
Pk = Pk - Kk H(k) Pk - Pk H" (k) Kk

+Ky [HQPH (k) + R K} o (A-13)

It can be shown[A], that Pk reduces to:

£

P, = P - K, H(K) P} | | (A-14)

Equations (A-9), (A-10), (A-12) and (A-14) constitute the
Kalman filter for the system described by the mathematical
model of Eqs. (A-1) and (A-2).

L. Meier proposed an extension of Kalman's method
to nonlinear system, using a linearization prdcedure[l’G].
This so-called "Extended Kalman Filter'" will be described
next. The system under consideration is described now, by -
the following set of nonlinear difference equations:

(X o



5k+1

= £(Xy, Uy, K) + w

(A-14)

Uy is a r-dimensional control vector. Other variables are
the same as in Eq. (A-1). The measurement equation is also
described by the following nonlinear set of equations:

Brep = B(Xpapok¥l) + vy oy

Equations (A-14) and (A-15) are linearized using a

first order approximation around Xy and PSR respectively.

':-.’.(.k+ 1

Bys1 7

where:

= _f_(_{k’y_k;k) + fx(—}EkE—k’k) (_)Sk -

N

ru

h(x

ke K1) 4 By (g kel) (x
of.
1 '
'ax a (nxn) matrix
J
oh.
1
5 x a (mxn) matrix
J

(A-15)
X)W (A-16)
T Xy Vi .
(A-17)
(A-18)
(a-19)



~ Introducing

A

- f(x k) = Xpp1 7 X

g1 T Xkel k* 2k

X T X T X

Equation (A-16) now becomes:

Xpe1 "Xy Yps k) X + Wy

(A-21)

(A-22)

As one may scee, Eq. (A-22) is of the same form as Lq. (A-l),
where the matrix fx has replaced the state transiticn matrix

¢(k+1, k), and §k+l’ gk have replaced Xp+10 Xk respectively.

In a similar manner one may introduce:

0

~ ~

TBye1 T Byar - DXy

.

k+1)

and the measurement equation (A-17) will take the form:

—

Bra1 = Dy Xpygs KH1) Xy + Vi

B This is a linear set of equations completely analogous to
Eq. (A-2), where the matrix hX replaces matrix H(k+1), and

the vectors Bk+l’ 3k+1 replace Ek+1 and Xi+1 respectively.

(A-33)

(A-24)



The Extended Kalman Filter may now be formulated as
follows, based on Egs. (A-9), (A-10), (A-12), (A-14), (A-22),
(A-24):

~ ~

X = (X sy pok-1) + K (8 - h (x,, K]  (A-25)

e " T 2 s -
K = Ppohp(x, K) [ (g, PLhy (g, K) ¢ RITT O (A-26)

~ TA
Pp = F (X 1o8g K1) Py £ (X 3oYpys k-1)
£ Qe (A-27)
P = Pl - K h (k) PL (A-28)
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APPENDIX B 4
A SUMMARY OF- PERTINENT RESULTS FROM
LINEAR OPTIMAL CONTROL THEORY

The optimal control techniques applied in the programs
ORBRAC, ATRK30 and RATS are described in detail in previous

publications[l’z].

The performance criterion adopted in these programs
is the minimization of the pointing error, or rather the
sum of squares of the pointing errors at the sampling times.
In addition, a weighted energy term (square of the control
signal) is added to the performance index at each sampling
time. Basically one has a Minimum-Error, Minimum-Energy'
optimal control problem. The performance index is expressed

as:

N
Minimize J = :E: 3[X(i) -~Xt(i)]2+[Y(i) - Yt(i)]2+
i=1 .

wxuxz(i) + wYuYz(i) (B—i)

where

—

X(1) antenna Xlaﬁgle at the sampling time t = t..

i
.‘ Xt(i) = the true, or predicted X anglé
Y(i) = antenna Y angle
Yt(i) = the true, ot predicted Y ang}e
Wy - = weighting'factor.for the YX-channel

&
3,



Wy = weighting factor for the Y-channel
uy = control signal on the X-channel
uy = control signal on the Y-channel

The state equations are linearized, so one has the
‘classical problem of optimal control of a linear system
with a quadratic performance criterion. The solution to
this type of problem is well known and was documented in
numerous publications. A good tutorial exposition on the
subject may be found in References [3’4], to mention only

a few.

After applying the basic Maximum Principle techniques,

~the optimal control vector is given by:

u(i) = -K(i) x (i/1) (8-2)
. _
where ™
x(i/1) = estimated state vector at t = ti based on

prgvious estimates up to t = t; - (of Appendix A);

K(i)

gain matrix at t = ts.

The gain matrix is a function of the PC matrix which
~is a solution of a matrix Riccati equation. The details
concerning the solution of the Riccati equation in these

programs are found in References [1’2].
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. APPENDIX C
RATS Program Documentation

INPUT (Program RATS)

Input to program RATS is supplied by six NAMELIST

data statements in the following sequence:

/PLOTS/ NOPTS
JTYMSTA/ DTC, DT, PSI, DELTA, ST
/STATEL/ X0, AE, RP
/NOISCV/ R, QV i
/STCOV/ PK

" /SCALE/ VM, EM
/DYNMIC/ FP, DPHI

A full descriptiocn of the NAMELISTs follows.



NAMELIST - ITEM : DESCRIPTION

/PLOTS/ - ‘ NOTPS Number of time points to be

/TYMSTA/ DTC Time-interval in seconds fo.
: gration of satellite motion

tions occurring at times bev

two successive values of DTC

are obtained by straight lin

pulation.
DT Data sampling interval in se:
PS1I Latitude of tracking antenne
' degrees.
DELTA Right ascension of antenna at
start of tracking interval in
" degrees.
ST End time of tracking interval
seconds.

/STATE1/ X0(1) X-Coordinate of Satellite¥®
X0{2) Y-Coordinate of Satellite
X0(3) Z-Coordanate of Satellite
X0(4) A X=Coordinate of Satellite
X0 (5) Y-Coordinate of Satellite
X0(6) Z-Coordinate of Satellite

o

AE(1-6) Estimated initial values of
: X0(1-6)

AE(7-12) Estimated initial values of

etevation channel state.

yiie

AE(13-18) ‘Estimated initial values of
e ggdmue-th channel state. .

R = o Kk B
RP(1-6) Irue values of initial edewétion '

. channel state. \

' S

RP(7-12) True values of initial Azimirth
channel state.

- *Values at start of tracking interval, t=0.



NAMELIST

/NOISCV/

/STCOV/

/SCALE/

_. /DYNAMIC/

*1ITEM

—m

R (11,11)

Qv (5,5)

PK (18,18)

VM (11)

FP (12,12)

DPHI (12)

DESCRIPTION

Covariance matrix of system
imeasurement noise, E[v,Vv].

Covariance of system dis-
turbance vector, E[w,wi].

Covariance of initial sys-
tem estimate E[a,dt] ie
E[AE,AEY].

Weighting vector for mea-
surement noise.

Scaling factor for R, QV,
VM Nominal value=1l.

Matrix representation of
system dynamic function.

Coefficients of control input.



Name
RATS

BLOCKDATA

/a1

//;RAxs«
/
/
Y//TZERO

AGBT

- PFEEH

¢

Calculate $s» B

RATS PROGRAM
SUBROUTINES DESCRIPTION

Function
Read plot control.

Preset common block variables.

v ' -
Re§9/items from haméliggs: TYMSTA, STATE1,
NOISCV, STCOV, and SCALE. Write initial

!

conditions and system constants.

Read items from namelist DYNMIC. Compute -
o) Bgr Ty Eq. (24)* » I'y, Eq. (33)

’ 7
Calculate control as in Eq.*(63). Form v

plot if all points finished. Calculate
a(k/k®1) as in Eq.*(32).

Calculate the coefficient of ;(k/k) in

Eq. (63); and write as feedback coefficients.

Calculate ¢s’ 65 Eq. (41)

-

Calculate g (k) Eq.(27)

s (Eq.(41)

* The equation numbers correspond to these of reference
[3), referred to in chapter 3.



SUBROUTINLES DESCRIPTION (cont.)

Name Function

PXAGBH Calculate predicted satellite data,
using Eq.(32). Find ¢.» O and calculate
B(k/k-1) Eq.(34). '

PKKM Calculate P(k/k-1) Eq.(33)

HMAT Calculate l(k) Eq.(31).
(Note: For system in actual program the
form of H used may differ from Eq. (31).)

WATE Calculate W(k), Eq.(36).

POSITN Integrate equations of motion to update

satellite position-velocity.

- £
PCNTRL Find steady state solution of the Riccati
equation in Eq.(52). '

ECNTRL Calculate coefficient of ;(k/k) in Eq.(61).
BARN Random number function.

DNVERT Matrix inversion routine. )

ITRVRS . Iterative matrix invertion.

C-5



"~ RATS PROGRAM ‘

Program Variables ' -

 Variable
Program Report Units Description |
T
A2 ¢ PZA
|
[B+A pATAT See #59, #62 ,
. o rr _1 ‘
- AS [B+A PZA] See #52
AE a(k/k) Estimated system state #35 |
ANGOUT Deg. Output arrary for angles and ..
errors
AP x{k/k-1) Predicted satellite state #32
BETA B (R) o Measurement vector #27 4
 BETAH B(k/k-1) Predicted measurement vector #.-
*CNT ~ Horizontal counter for plot rou’ ‘
cp cosy cos of station latitude (App |
—— . . ‘
C2 cos (Qt+§) cos of station right asce
- (Appendix A) - -
DELTA ) Radians Initial value-ofariglﬁ a. !
| “ station

c-6.



2w

N

, i Variable
' Program Report Units Description
E'DLC A A T,py7 1
-A[AP,A" 3] A See #62, 63
3 DLP A (k-1) Antenna system control variable
constraints #24, #32
" DPHI D¢ Control constraints for continuous
; case #17
QDT At SEC Sampling interval
%DTC SEC Time interval over which satellite
1? position-velocity is to be found
é by linear interpolation
] |
“ETA Col. 1 of Corresponds to constant portion,
g [I—w]_lAST(k) for Y-channel, of n #61, multipli-
: cation by ; occurs in TRAK2
: o
: ‘ ,
» ETAL Col. 1 of Corresponds to constant portion,
b (191718, (® _for X-channel, of n #61.
gETN In routine TRAK2; P2¢Y Y-ry #63,
= P for Y angle channel.
g ‘ ' A
4ETN1 In routine TRAKZ; P,¢ X—rk, #63,

27X
for X angle channel.

State ‘transition matrix for con-
tinuous antenna system, #17

assumed identical for each channel.




Variable

Program Report Units Description
G I (k-1) Complete constraint matrix for
system, #33
GAMP Pr(k-l) Antenna system noise constraints
' #19, #25
GAMSUB F(kml)Q(k—l)FT(k-l) Contribution to I'(k/k-1) from
system noise covariance, Q, #33
GS r.qQ Dot product I'.Q #33
i
H H (k) Matrix of partials of B with re-
¥ spect to X #31, #34
HE SEC Integration step size for orbital
motion
E-J
- KPASS — Program branch control must be presc
to O for first pass
L1 Unit number for input normally =
- LO ‘Unit number for output normally =
Omega f Rad/Sec Rotational velocity of the earth
P2 . Temporary storage in calculations
¢  from F_ #19
r T
PC p Steédy state solution to Riccati

| equation #52.

6

3
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Variable

Units

rogran Report Description
A p
2 - Temporary storage for P2
i <%(k) Rad "True elevation angle (in this system
Y angle) #27
‘IERR Deg. Error in ¢ (Y) for plot routine
iIH (%(k) Rad Estimated elevation anglel(Y)
1P ¢(k/k-1) Rad Predicted elevation angle (Y) #34
-hP(k,k). Covariance matrix of error in
A | estimate #37
B P(k/k-1) Covariance matrix of error in
S - prediction
. e - . - .
-@r(k_l)“ Antenna system state discrete
' transition matrix. Assumed
constant and identical for both
channels, #19
P Radians Latitude of station
u Control variable for Y-angle channel
Control vafiable for X-angle channel
o (k-1) Linearized state transition matrix,

#33

" Temporary storage no longer used
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Variable

Progranm Report Units Description
Qv Q (k) Covariance of system noise.
See page 16 and #33.
R R (k) Covariance of measurement noise
See page 14 and #35, 37.
. RCP Meters re*cosy
RE re Meters Radius of the earth
RP r(k-1) True antenna system state #25
‘RP1 r (k) True antenna system state #25
SA b,,b,,b _ Y 431
1°°22°3 TP
i
SB a,,a,,a . 9X_
1°92°73 T #31
- i
SL SIN (Qt+6) SIN of station right ascension
‘(Appendix A)
SP SINy SIN of station latitude
Appendix A)
ST SEC Time _after epoch of last desired
data pbint
_ T Temporary variable used in cal-
culation X,Y angles
THE ¢ (R) True azimuth angle (X angle) #27

C-10
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Variable

H
e

Program Report Units Description
jTﬂEERP | Deg. “Error in & (X) for plot routine
ETHEH :%S(k) Estimated azimuth angle (X-angle):
%THEP ,%s(k-l) Predicted azimuth angle (X angle)#34
fTIME : SEC Currént sample time .
§TYME - SEC In£erpolétion time
jUC r Variance of control vériable

i o : page 22, #43

Tuen p

2%y Y angle channel #63
4 UCN1 Pydy X angle channel #63
: km3 2
- UE ) ue /sec Gravitational constant
LV | V(k) ~ Measurement noise, #27
i .
UM ' W(k) 'Scale factor for measurement noise
before use V(k) = V(k), VM
) WIK W (k) 1 Weight matrix #36
X X : Meters Actual position vector of
' . satellite (Appendix A)
CXN . Meters Satellite state at end of

interpolation period

C-11



Variable

Program Report Units Description

X0 Meters Satellite state at beginning
of interpolation period

Y y Meters Position vector of station
(Appendix A)

Z rA Meters X-y

ZA |Zr| Meters True range of satellite

ZAP Meters Predicted range of satellite

ZE Meters Difference between estimated
satellite position and station
position vector

ZP Meters Topocentric coordinates of true

N position of satellite

ZR Zy Meters Topocentric coordinates of true
position of satellite

ZRP Meters Topocentric coordinates of

predicted position of satellite

1
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~ APPENDIX D

DIRECTION ANGLES

The direction angles used in this study will be
defined with respect to the coordinates system in
figure D.1. The Elevation (EL) and Azimuth (AZ) angles
as well as the X, Y angles for a 30 ft. antenna, are
defined in figure »D.1. (a). The same X, Y convention is
also used in the 40 ft. antenna.

If the satellite coordinates are (x”, y~, z°), '

‘the angles are:

-1 (x”
o
EL = tg ! Z = tg 1 Z
2.2 2. .2
0 -z xSy

‘where -

(D.3)



Yon = tg-1 SUD A— tg‘1 24 (D.4)

2 .2 L2 L2
D -y X T+z

The relationships between them are, [1]:

sin Y30 = cos EL cos AZ : » (D.5)
tg X, = cot EL sin AZ _ - (D.6)
sin EL = cos Y30 cos XSO | (D.7)
tgAZ = cot YSO sin X30 (D.8)

The X, Y angles for the 85 ft. antenna are
defined in figure D.1 (b). The corresponding re-

lationships are:

. S B
X85 = tg/‘ ( > ) (D.9)
- -1 x”
Ygs = g (“‘“g““; )
. p -x"
P A . S  (D.10)
Tg 2 |



sin Y85 = cos EL sin AZ ' o (D.11)
- -cot EL cos | o (D.12
tg X85 cot EL cos AZ ( )
sin EL = :COS Y85 cos X85 - (D.13)"
tg AZ = -tg Yy / sin Xg¢ (D.14)
REFERENCES
1. I.M. Salzberg, '""Mathcmatical Reclationships of

the MFOD Antenna Axes," NASA Report, X-553-67-213,
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GSFC, May 1967.
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