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1. _ Introduction

The purpose of this project was to generate a digital

computer program which mathematically describes an optimal

estimator-controller technique as applied to the control of

antenna tracking systems used by NASA. Simulation studies

utilizing this program were to be conducted using the IBM

360/91 computer.

Previous work performed by Stanford Research Institute

(SRI) for NASA, ERC, Cambridge, Mass., served as a starring

point in this project. The program written by SRI was hot

addressed to areal-life tracking system and it assumed the

system to be linear. In this project, the optimal estimator­

controller program was adopted for the 30 ft and 40 ft NASA

MSFN and- STADAN antenna tracking systems. Simulations in­

cluding the nonlinearities were performed and algorithms

for direct synthes~s of the control signal, taking"into

account the nonlineariti~s, were proposed. The results of

this study are summarized in this report. _

The basic ideas of applying optimal estimator-con­

troller techniques to antenna tracking systems are discussed

in Chapter 2. A survey of existing tracking methods is given

along with shortcomings an~ inherent errors. It is explained

how these errors can be considerably reduced if optimal es­

timation and control are used.

The modified programs generated in this project are

described in, Chapter 3, and the simulation results are sum­

marized in Chapter 4. The new algorithms for direct syn­

thesis and stabilization of the systems including nonlin­

earities, are presented in Chapter 5. Conclusions are
given in Chapter 6.
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The report includes four Appendices. Basic notions

of optimal recursive estimation are presented in Appendix A,

while the optimal control policy used in this project is

outlined in Appendix B. Appendix C constitutes a detailed

documentation of the optimal estimation-control program

RATS generated in this project. Various reference angle

coordinate representations are given in Appendix D.
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2. The Application of Optimal-Control

Theory to Space Vehicle Tracking

2.1 Introduction

The basic reason for considering the application

of optimum stochastic control to a tracking antenna system

is the possibility of achieving some measure of dynamically

minimized pointing error. Thus the object is to realize

optimum pointing estimates in real time as opposed to their

determination through post-flight analysis. Such critical
,

real-time tracking support may be necessary during manned

f~ight missions where, for example, extremely accurate

coverage of a rendevous and docking maneuver is required.

Also, for systems exhibiting very narrow beam widths

(such as laser ranging devices), precise pointing may be

necessary to maintain lock-on.

In general, the de~ign of an optimal controller

begins with a precise definition of. both input signal

and plant dynamics. In stochastic applications, the

state must be estimated from measurements made at various

points within the combined systems. Once these estimates

are obtained, they become input to a control law, the

purpose of which is to minimize some (average) measure

of (in this case) antenna pointing error.

A detailed discussion of the mathematical theory

of optimum control is beyond the scope of this report;

however, a great body of literature exists on this sub­

ject for reference, and a few pertinent sources are listed

in Section 2.6. The next section (2.2) contains a brief,

general description of the theory as applied to the 5y5-
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tern studied under·thi~ contract, while in Section 2.3, .

the tracking system itself is discussed. In Section 2.4
major errors inherent in the overall dynamical system are
discussed, and in Section 2.5 an example is given of how

certain ~rrors are formulated mathematically in the es­

timator/controller model.*

,....

..

. * This inclusion of this formulation in the simulation
program was beyond the scope of this effort, and is
included mainly to indicate one direction for future
work.
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2.2 The Optimization Problem

Figure 2.1 is a simplifie6 block diagram of the

tracking problem considered in this study. The "input

signal" is described by means of a set of non-linear

differential equations which define the trajectory of

the space vehicle. The instanteneous .trajectory state

is then transformed into a set of "observables" to which

the tracking system responds (for example, a typical

set of observables is comprised of two orthogonal pointing

angles with respect to an antenna datum, plus measurements
of range and/or range,rate).

In this study, the observables which drive the

antenna system are angluar offsets from the "mechanical"

boresight (which is, in this simple model, assumed to

correspond to the RF-boresight). This displacement is

sensed in a set of error detectors which generate ~ppro­

priate electronic signals which in turn drive the an~.. .
tenna system back into a null error situation.

The optimization problem is to find a controller

which, given appropriate knowledge of the state of the

entire system, will maintain a minimum average value of

squared pointing error's'.

In general, however, although the input signal

dynamics may be known fairly well, the "first order"

stochastic problem requires that the initial conditions

be estimated from the measurements themselves. In
addition, other components of the composite state vector

may not be known a priori, so that they must also be

estimated. Thus, the more general "stochastic optimum"

control problem requires consideration of a meth6dfor

stat~r~itimation.*

* See References 2 and 4 for a more detailed, mathematical
discussion of the stochastic optimum control problem.

2-3
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Although a detailed discu~sion of these added

unc~rtainities is beyond the scope of this effort, some

examples are given in Se~tion 2.4 as an aid for future

study. First, however, a more complete description of

how the present-day tracking systems operate is pre­

sented to set the basis for the simulations described in

Chapter 4. There are two basic modes ~f operation:

"autotrack" and "program". A detailed description of

the observables (i.e., fiX and Y angles") is included in

Appendix D.

.;
;.~. :-
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2.3 Antenna System Operating Modes

.,

2.3.1 The "Autotrack Mode" of Operation

The "Autotrack Mode" constitutes a closed loop

automatic control operation of the antenna tracking

system. It is most widely used in actual tracking

operations. A block diagram is sketched in Figure 2.2.

In this case, the difference 'between the RF or

Boresight axis of the antenna and the actual line of

sight to the satellite is measured, and the reading

constitutes the error signal in the feedback loop. The

control action tries to minimize this error. Although

there is a certain amount of feedback involved in this

operation, the information fed back to the control sys­

tem is still incomplete. For instance, no information

concerning the actual and predicted trajectory of the

satellite is being.transmitted. With respect to the

trajectory information, the autotrack system could be

regarded as an "open loop" system, although, technically

it does have a closed loop.

2- 6'
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2.3.2 The Program Mode of Operation

The basic principle of this Program Mode operation

of an antenna tracking system is illustrated in Figure 2.3.

The trajectory of the satellite as well as the precise

J location of the tracking station are assumed known. Using

this information one may pre-calculate the values of the

X, Y angles as functions of time for the whole tracking

period. This information is ~tored on tape and fed to

the comparator at the output of which appears the error

signal. This error signal drives the antenna in the

direction of minimizing this error.

The main disadvantage of this method is the fact

that the whole control action is accomplished without .

any knowledge of the "actual position of the satellite.

It may happen that the satellite's trajectory may become

displaced for some reason, and in this mode, the tracking

system may not "know" anything about it. Although there

is a closed loop in the block diagram, this mode of opera­

tion is basically~pen-loop from the control systems

standpoint, since there is no feedback signal which rep­

resents the actually controlled entity .. In this mode of

operation it is easy to wind up with a situation where

the satellite is at one place and the antenna is pointing

to another.

.' 2-8



2.4 Examples of Errors In the "Autotrack" System

The autotrack system is plagued by a set of errors

inherent in the system's operation. Some possible errors

:can be' introduced as schematically sketched in Figure 2.4.

For the sake of simplicity, only, one channel is shown

in the figure.

The typical errors existing at various stages of

the operation of the autotrack system are the following:

l.e l - ray path errors, which may_include

(a) Error due to refraction of transmitted

signal paths in the atmosphere.

(b) Errors reSUlting from imprecise knowl­

edge of station location.

(c) Timing ~rrors.

orbit)

(Station relative to

2.e z - errors resulting from receiver noise, for instance:

polarization shift error.

3.e3 - dynamic errors of the feedback control

system, which may include

(a) Servo dynamic errors of the control system,

(acceleration error, velocity error)

(b) Wind gust errors, (zenith structure shift,

direction· effect)
."

.'

.'

(c) Mechanical misalignments, (deflection coefficient,

deflection angular effect, tilt, axis lack of

orthogonality)

2-9
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Fig. 2.4 An Example of Errors in the Autotrack System
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4.e4 - RFaxis tracking errors. [1]

(encoder and axis bias, encoder hysteresis)

In the usual autotrack system very little can be

done to alleviate the effect of these errors. On the

other hand, as indicated in the next section, by using

the.optimal estimator/controller idea, one may compute

an optimal estimate of these errors and hence account for

their presence in the desig~ of'the controller.

2.5 Est{mation of Errors

By formulating the problem within the framework

of the optimum stochastic control, it is possible to

consider these errors and, in some cases, to either

remove their effects from the state variables used by

the optimum controller or include them in the actual

controller design.

..
The basic notion behind successful application

of this idea is the notion of observability, that is,

whether or not, given all measurements up to and includ­

ing a given time It', the desired error sources are

observable in the sense that meaningfUl estimates of

their values can be obtained from these measurements.

AI.so, the degree of observability is important inasmuch

as those errors that can be estimated with smaller amounts

of data will tend to yield more optimum overall results

as far as fixed interval real time optimum control is

concerned. This question is, however, a complicated

one in general and will not be discussed further here*;

* Some research into the area of orbital state trajectory,
estimation in the presence of unknOlvn dynamic equation
and measurement errors has been. carried out by A. Dennis[S].
Application of the techniques developed should Simplify the
general controller estimation problem and will be ex-
amined in future work.

2-11



rather, an example will be given of how a typical error

source might be contained within the estimator formulation.

To be specific, for the case of one quarter of the

prescribed bandwidth for the system under study, [3, Chapter

12], the transfer function of the plant is:

where

X(s)

U (s)

= .125

s(.5s+l)

.--

Xes) = s-transform of the X angle.

U(s) = s-transform of the forcing functions.

The treatment will be confined to the X-channel only, since

the treatment of ~e Y-channel would be identical.

-----Introducing the follow ing s ta te variables:

Xl (t) = X(t)

one obtains the following state equations:

.
x 2 = -2x Z + .25u (2 - 2)



or

•x = Ax + bu

where

Xl1
0 1 a

x _. A = b =-
0 -2 .25x

2J .J

In practice, the state variables of the system are

not directly observable. Moreover, as pointed out in

Section 2.2, they are corrupted by a set of errors. The

errors could be represented as additional state variables

of the system. The way it is done, will be illustrated by

a specific example. ..

(2 - 3)

One should start in this case from the state transi-o

tion equation obtained from the state Eq. (2-2). This

would actually be the closed-form solution of these equa­

tions:

t k

~(tk) = eA(tk-tk _l ) ~(tk-i) + f eA(tk - --T)E.u(T)dT

t k - l

\

l'

2-13
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In this case:

So, Eq. (2-4) becomes:

o

Or:

UdT (2-6)

2-14
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= ~ (k,k-l) x (tk-l ) + r (k,k-l) u (tk- l )

This expression is similar to the one in Eq. (A-I), in

Appendix A. The same expression could be written for the

Y-Channel.

(2-7)

,.

The errors to be considered, as an example, are the

bias and the tilt errors. They are expressed as follows:[l]

Bias Error at t = t k ; El = Bk , a constant

Tilt error at t = t k ; E2 = Tk tgYsinX

The tilt error consists of a fixed coefficient Tk , but the

measured result depends on X and Y.

Both Bk and Tk are unknown a priori and are ~o be

estimated by the optimal estimation process. They ar~ rep­

resented as additional sta"te variables. The original state

vector is augmented as follows, to form a new state vector:
~.....~.- -.

x(tk ) xl(tk )
--------

Xk = Bk - - x 2 (tk ) (2- 8)

T Bkk

Tk

2 -15 .



Since Bk and.Tk are assumed time invariant, the augmented

state transition equation will be:

where

x =-k

uk-1

ep(k,k-I)

o

o l(k,k-1)

o
(2 - 9)

or:

(2-10)

where the definit~on of epi and PI is obvious from Eq. (2-9).

For the sake of simplicity, assume that there is no

extra noise on the state equation, of the antenna, i.e.,

w = 0-k
(see Eq .. (A-I) ln Appendix A)

,2-16 I
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Now one has to formulate the measurement equations.

Considering the X-channel only, it will be assumed that

the following entities are measurable:

where

1.

2.

3.

x - X
s

x

X = predicted line of sight of the satellite fors
the X-angle.

p = range from tracking station to the satellite.s

Forgetting for the moment the errors, the measure­

ment equations will have·the fol1~wing form:

I.k = overall(state vector,/(including satellite and antenna).

Same as Eq. (A-2), with all symbols defined identically.

In this case, n=8, m=3, so, H will be a 3x8 matrix,

(n=8, since there are 6 state vatiables for the satellite
, .

equations and 2 for the X-channel of the antenna).

Let the overall state vector be defined as follows:

2 -17'
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Zl

Zz
z3

·zl
l. = ·Zz

·z3

xl

JXz

Cartesian coordinates of the sat­
ellite in tracking station cen­
tered system. zl - zenith

z2 - east

z3 - north
Cartesian velocity components
of the satellite.

Details concerning the satellite-and measurements equations
may' be found in references[2,4J.

The overall augmented state vector will be:

l.

Yk = Bk ..
Tk

-------..

And the overall augmented state transition equations will

be of the form

Yk = ~2(k,k-l) Yk - l + f 2 (k,k-l) uk - 1 + wk - l

where ~2 and f 2 may be worked out as was clear before.

2-18
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The linearized measurement matrix HI (k) in Eq. (2-12)
may be expressed as follows:

ax ax ax
5 s S 0 0 0 1 0- - -- -

az1 az2 az3

0" aPs aPsHl(k) = Ps 0 0 0 0 0 (2-14)

az1 az2 az3

0 0 0 0 0 0 1 0

It was shown in [4 J.

-

ax z2s = -
azl 2 2

zl +z2

ax zls = -----
az 2 22 z1 +z2 ..
ax '''-. ...~--.

5
:::> o·

az3

aPs Z.
1

=
az.

Q+ 2 z'1 Z2 +Z3

i=l, 2, 3

(2-15)

(2-16)

Ta~ing into account the errors, the augmented

linearized measurement matrix will take the following

form:

2-19-



~ oEl aE 1 tgYsinX-2- --
3Bk aT

k
H(k) = HICk) - HI (k) 0 0

aOE aOE z1- --
aBk aTk 1 tgYsinX

Applying the optimal estimation techniques to this

system, as described in Appendix A, one finds an optimal

~stimate of the overall state vecto~, at any time t = t k ,

Yk . This optimal estimate includes also the estimates of
'" '"

!he errors Bk , Tk . The overall estimated state vector

Yk , is then applied as an input to the optimal controller.

(See Appendix B) The optimal controller produces a con­

trol signal which takes into account the whole state vec-
'"

tor Yk , including all the errors and which extremizes

the performance index. In this case, it would be minimiz­

ing the pointing error.

2.5.1 Discussi~n

-------- The above simple example, as noted earlier, is pre-

sented only to indicate the usefulness of the formalism

of optimum stochastic control in handling realistic measure­

ment error sources. In the real world, although some mod­

ifications to the basic structures may ~e necessary[S],

the overall effectiveness of these ideas can be retained.

This topic is not discussed further in this report, although

it is recommended that realistic systems be examined from

this viewpoint in future work.

2- Z0
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3. Es t ima t ion and Control Simula t ion Programs

3.1 Introduction

Two programs served as a basis for the present
simulation studies:

(a) ORBTRACK, [1,2].

This program simulates the autotrack and the opti­
mal estimator-controller modes of operation, of
an optical tracking syst~m for an interplanetary

mission. The basic theory underlying the program
is described in reference [1], along with some
simulation results. The program documentation

is given in Reference [2]. This includes a gross
flowchart and subroutine and symbols vocabulary.
The program was originally implemented on ~n IBM

7094 system. •

--------
(b) RADIO ANTENNA, [3]. This program simulates the

optimal estimator-controller mode of operation of
~"I'PJJ;;J.:}L(;::,<'{,e~

an~agin~y radar tracking antenna, for a satellite
around the earth trajectory mission. The tracking
works on an elevation-azimuth reference basis.
Only the elevation channel was originally available
in the program. The theory relevant to the program

was described in reference [3], Chapter 7. No
.program documentation was available. The program

itself was not debugged to the end and was not in a
working condition. The program was originally written

for the IBM 7094.

3-1



Both programs, with the exception of a few sub­
routines.in Assembly Language, were written in
FORTRAN IV.

In the current project, both programs were adopted
on the IBM 360/91 systems. Both programs were
equipped with optional graphical display facilities.
The modified ORBTRACK program was renamed: ATRK30,
and the RADIO ANTENNA program: RATS. Both ATRK30
and RATS are written in FORTRAN IV, without any

subroutines in Assembly Language. The following
basic changes were made in the programs:

ATRK30

(1) Adoption of the IBM 360/91 system.

(2) Replacement of Assembly Language subroutines
with library subroutines called in FORTRAN IV.

(3) A~dition of optiona! graphical display of
various functions as a function of time.

(4) Transformation into the X-Y angle reference
system.

(5) Replacement of the origin~l optical tracking
system by a model of the GSFC 30 Ft. tracking
antenna.

(6) Inclusion of options to perform simulations
with nonlinearities in the loop.

, 3- 2



RATS

(1)-(4) Same as 1n ATRK30.

(5) Replacement of the original imaginary antenna

tracking system by a model of the GSFC 40 Ft.

tracking antenna.

(6) Inclusion of an additional angle channel

into the program. (Only one channel was

originally available).

(7) Convergence in the state transition matrix

calculation was achieved. (There was a

divergence in the original p~ogram). Con­

vergence was achieved by implementing a

new method.

(8) The previous matrix inversion routine, which

gave unaccept!:J.ble results, was replaced by

an improved routine. Moreover; the total
~,

num~e~ of inversions to be performed, was
reduced.

(9) The input was modified to read directly the

system matrix A (See Eq. (2-3)) of the state
equations.

(10) Generation of program documentation. More

details will be given further in the chapter.

Details concerning simulation runs performed,

will be given in Chapter 4.

3-3
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3.2 The ATRK30 Program

As mentioned before, the ATRK30 program is basically

the same as the ORBTRACK. The main difference is in the

plant configuration. It so appears, that both plants may

be·represented by the following transfer function:

K
. G(s) =

s (s+a)

The interchange between them is accomplished by changing

the values of K, a, which a re_. funct ions of input data.

1
K =

J

(3-

-...-._--
a

J

f

=

=

=

J

m:m~nt of inertia of the sys tern IInput data of

friction coefficient of the system the program.

.,

It should be noted that Eq. (1) is a very simplified

representation of the antenna power system. However, it is

the one used in the original report concerning the 30 Ft.

antenna, [4] .

.3-4



The actual transfer function used in the simulation

was:

G (5) =
.25

S(5+2)
(3-2)

This is the case of 1/46f the total available

bandwidth, as specified in [4], Chapter 12.

There is a difference in the controller stvucture

in autotrack mode. I~ the ORBTRACK program, for the

bptical tracking system, the controller has the form:

C (5) =
5

This is the well known parallel combination of an ampli­

fier, differentiator and integrator. In the 30 Ft.

antenna system, the controller has the form: [4]

C (s) =

In this particular case of 1/4 BW: a l = 12.5; b 1 = 1.5.

3-5
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3.3 The RATS Program

The basic theory underlying this program was

described in Reference [7]. This program underwent,

however, considerable changes in this project. No

previous programming documentation was available, so

this documentation will be given in this report. A gross

flow-chart of the program is shown in Figure 3.1. A

glossary of programming notation is given in Appendix C.
A list of the program's subroutines with a short descrip­

tion of the function of each as well as a list of all

input data is also given in Appendix C.

Description of the Program

The program is started by setting some initial

which include the angular rate of rotation of

Q, earth's radius, R , and the earth gravita­e
constant, l1 e '

parameters

the earth,

tional

In subroutine TPAKI the basic input data are read

in. -" .. (See Appendix C for a detailed list). The radius

vector components from tracking station to the satellite

are calculated and the input data are printed out. The

initial direction angles X, Yare calculated in TZERO.
-. (See Appendix D .for bas ic formulas on calculating X, Y.)

Subroutine FPHI reads in the data for the state

equations of the antenna, i.e., matrix A and vector b

from Eq. (2-3). This arrangement makes the program

flexible enough to be applied to various types of tracking

antennas, just by changing some input variables. The state

transition IT,Btrices of the system are computed. (See':'

Eq. (25) of [3].)
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START

/

r--~-_-L_----l""'>/v
SET INITIAL VALUES

"

RAlS Flvw Chart

2

AGBT
CALCULATE ACTUAL X,V
ANGLES, AND ACTUAL OB­
SERVATION B VECTOR.

"
TRAKl

.. READ INPUT DATA
CALCULATE FUNCTIONS
OF STATION POSITION.
WRITE INITIAL VALUES

TZERO
CALCULATE INITIAL
VALUES OF XsY ANGLES
AND WRITE X,Y VALUES

v

I

PXAGBH
FIND PREDICTED POSITION­
VELOCITY. SET UPPER
LEFT PORTION OF PMI- .
MATRIX TO SATELLITE
TRANSITION MATRIX FOR
THIS TIME.
CALCULATE PREDICTED
X,V ANGLES, AND,

- ESTIMATED OBSERVATION
VECTOR

... I1

FPHI
READ NAMELIST DYNMIC
WRITE NAMELIST DYNMIC
CALCULATE DISCRETE
FORM OF TRANSITION MA- ..
TRIq:S. WRITE DIS-
CRETE MATRICES SET
LOWER-RIGHT PORTION
0

, IF i PMI'- MATRI X
"-.-:....

"\

/

r-------L.-----..../
:rRAK2
IF NOT FIRST TIME GET ­
ESTIMATED X,Y ANGLES
UPDATE ETA. AND CAL­
CULATE CONTROL. \~RITE

TIME POINT DATA. GET
PLOT VECTORS AND IF
LAST POINT PLOT RESULTS
THEN STOP.
CALCULATE'MEASUREMENT
NOISE. UPDATE TRUE AND
ESTIMATED STATE VECTORS

PKKM
CALCULATE COVARIANCE
OF ERROR IN ESTIMATE

HMAT
CALCULATE TERMS OF
H-MATRIX, THE JACOBIAN
MATRIX RELATING THE
OBSERVATIONS TO THE
STATE VARIABLES

WATE
CALCULATE THE OBSERVA­
TION WEIGHING MATRIX.
IF OTHER THAN FIRST
TIME POINT THE INVER­
SION (36) [R+HPHTJ-l
=C- 1 IS PERFORr~ED

3



ALKPKK
fORM RESIDUAL (OBSERVED)­
(COMPUTED) WRITE RE­
SIDUAL VECTOR. FOR~1

NEW ESTIMATED STATE VEC­
TOR. CO~iPUTE COVARI­
ANCE IN ESTIMATE

PCNTRL
ITERATE RICCATI EQUATION TO
FIND STEADY STATE SOLUTION.
START WITH APPROXIMATE
SOLUTION = I.

ECNTRL
CALCULATE CONSTANT
PORTION OF ETA (61)

PFEEH
CALCULATE ESTIMATED
Xt " ANGLES

TRAK3
CALCULATE AND WRITE FEED­
BACK COEFFICIENTS. CAL­
CULATE CONSTANT PORTIONS
OF (63).

NOTE: Numbers in ( ) refer t~ formulas in reference [3J, ch. 7
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In subroutine'TRAK2 the estimated X and Y angles

are used to update the variable of (Eq. (61) of [3]) and

to compute the optimal control, (I:q. (63) of [3]). Satellite

position is updated to current time. The predicted antenna

state is calculated (Eq. (32) of [3]), and the new overall

state vector is calculated, (Eq. (42) of [3]). The measure­

ment noise vector is also calculated in this subroutine,

using a pseudo-random number generator.

The actual X, Y angles of the ante~na and the

actual measurement vector 13, (Eq. (27) of [3]), are

calculated by subroutine AGBT.

Subroutine PXAGBH, called by AGBT, (which in ~urn
-'.

is called by TRAK2), calculates the predicted satellite

state vector x (Eq. (32) of [3]), the predicted X, Ye A

angles and the measurement vector 13, (Eq. (34) of [3]).

Subroutine PKKM, called by PXAGBH, calculates the

covariance of the error in the prediction, P(k/k-l), from..
Eq. (33) of [3]. The measlirement matrix H(k), (Eq. (31)

of [3]), is .c:alcula ted by the s ubrou tine HMAT, .called by

PKKM. (See also Appendix B of [3]). The observation

weighting matrix, W(k), (Eq. (36) of [3]), is calculated

by the subroutine WATE, called by ~\T. The new estimated

state vector, (Eq. (35) of [3]) and the new covariance

of the error, P (k/k) , (Eq. (37) of [3]), are computed by

the subroutine ALKPKK, called by WATE.

Since the steady state solution of the Riccati
equat~on is used, the Riccati equation has to be solved

only once. A special index KPASS is set to zero initially.

A test for (KPASS = O?) is made at the end of the ALKPKK

subroutine. If KPASS = 0, i.e., the program i~ in its

first 'iteration, subroutine PCNTRL is called. Otherwise,

the program goes back to TRAK2.

3-9
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Sub~outine PCNTRL solves the Riccati equation,

(Eq. (SO) in [3]), by an iterative procedure, starting

with an initial unit matrix. The iteration results

with the matrix P2 , (Eq. (52) in [3]). Subroutine

ECNTRL is called to compute T) and 1lJ, (Eqs. (61), (62)

in [3]), which are needed in the computation of the optimal

control. Subroutine ECNTRL calls subroutine PFEEH to

compute the estimated X, Y angles. PFEEH calls TRAK3,

where the constant portions of Eq. (63) in [3] are

calculated. Equation (63) is later used in the calculation

of the optimal control. At the end' of subroutine TRAK3,

KPASS is set to a value of 341 and the program is routed

to TRAK2.

- ,,-- _n' The Antenna Sys tern

A model of the 40 Ft. GSFC antenna system was

chosen. A block diagram is given in Fig: 3.2, (For

X channel; Y channel is identical) ...
Motor Motor N Antennc

Control Wind--'--- Speed Angle Angle
Signal Gustxm x Errorsu m X

~(S)}~ G(s) } 1I I ~

s

Figure 3.2

Antenna System Block Diagram
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,
The data for the antenna were taken from unpublished

notes by Philco-Ford Corporation.

The transfer function for the tachometer loop is

given by:

.
Xm(s) 8.33(.0475s+l)

=
U(s) .005055 2 + .108s+1

or:

=
78.2s- 1 + l650s- 2

1+21.4s- l + 1985- 2
(3-5)

(3-6)

The relation between the antenna angle X and the

motor angle X is given by the following differentialm
equation: (Eq. (13) of [3]).

.. • 2 1
JX ( t ) + fX ( t ) + N. K (X --X) = n ( t)

N m

3-11
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where

J ; moment of inertia of the antenna = 1.95 x
6 - 2

10 in Ib-sec

f = friction coefficient = .1 in 1b/rad/sec

N = gear ratio-from motor to antenna = 763

K ; spring c6efficient ~ 1.53 x 109 in Ib/rad

net) = wind gust disturbance

The differential equation for the wind gust disturbancE

is: (Eq. (14) of [3]):

where wet) is assumed to be white noise.

(3-

Taking into account the data, Equation (3-7), becomes

in Laplace transform:

+ .507 x 10-~ s-2 n(s)

3-12
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and the Laplace transform of Eq. (3-8) is:

(3-10)

Combining equations (3-6), (3-9), (3-10), one obtains

a signal flow graph of the whole antenna system shown

in Figure 3.3. The assignment of the state variables is

shown in the same figure.

The system state equations are readily written

out from Figure 3.3:

=

=
. . - 6

+.507xlO x 6

x 3 = x4.4

I - 21. 4x 4
+x 4 = --~~.

Xs

Xs = -198 .
x4

,/

x
6 = ./ -x

6

+78.2u (3-11)

+16S0u

+w'

or In matrix vector form:

(See Eqs. (17) (21) of [3])

..'
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where:

0 1 0 0 0 0

-785 0 1. 03 0 0 .507x10- 6

0 0 0 1 0 0
F = 0 0 0 - 21. 4 1 0

0 0 0 -198 0 0

0 0 0 0 0 -1

D = G=

o
o
o
o
o
1

The same set of state equations applies to channel

y as well.

The matrices F,D are read in as input data; they

are the ones which characterize the specific antenna con­

trol system. If it is desired to implement a different
antenna, or tracking system, it is only necessary to change

the F, D matrices, which are read in as array FP, DPHI by
the NAMELIST/DYNMIC/ in subroutine FPHI. After reading in

the antenna system data, the program proceeds as described
in reference [3], and in this section.
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Note that the wind gust d strubance appears as

one of the state variables in this model. It is one of

the errors mentioned in section 2.2. In this course of

the solution, the wind gust state variable will be esti­
mated by the optimal estimator, and the optimal control­

ler will provide a control signal, minimizing the point­
ing error and taking into account also the wind gust error,

among other data. This cannot be acco~plished in the

autotrack mode and it illustrates the,potential useful­

ness of an optimal estimator controller technique.

i

Particular Problems Encountered in RATS Development

In the following, some of the problems encountered
during the development of the RATS program are described.

(1) Computation of the State Transition Matrix ­

A Taylor series expansion is made to obtain.. '

the state transition matrix EXP[F6t], CEq.
----.-__. (20) of [3]). The programmed computation

in the original program did not converge.
The previously used convergence criterion

was changed to the following one:

Itrace ~n+l - trace ~nl < 10- 6
?

where

~n = Taylor expansion including n terms
.'

~n+l
:; Taylor expansion including n+l terms

i.j:: '

;....
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This revised criterion produced acceptable

values. As a further check EXP[F6t] for a

6x6 matrix was calculated by taking the

exact inverse Laplace transform of CsI-F)-l.

The results of the two methods agreed to

an acceptable degree of accuracy.

(2) Matrix Inversion Calculation - The matrix

inversion routine, used in the previous ver­

sion of the program was found to produce un­

acceptable results. The routine was replaced,

and an additional routine incorporated, using

an iterative method of calculation of calcu­

lating the inverse. In addition, the calcula­

tion of the weighting matrix used in the Kalman

filter was modified to calculate the required

inverse by a short iterative scheme, not in­
volving an actual inversion.

Referring to Eq. (36) in [3], it is required

to calculate

-1B

at each time point. The short inversion pro­

ceeds as follows:

Let B-lCn+l) = B- l Cn)[2I-BCn+l)B- l Cn)] be

the desired inverse at the next time point.

The method saves considerable time and in

the cases run yielded good results.

3-11
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RATS COMPUTER SPACE ALLOTMENT

For a two-channel antenna control system with 6

state variables per channel, the computer space allotment

in the IBM 360/91 is as follows:

1. With the plotting capabilities with 200

points per graph:

38A80 16 Bytes

or: .232,06410 Bytes

~. or: 58,01610 Words (single precision)

2. Without the plot~ing

19D0 016
or: /68,864 10
or: 17',216 10

capabilities, approximately

Bytes

Bytes

Words (single precision)

;.~.

/".-,.

~.i:: .

The computing time is less than 2 minutes for 200

points. There is no significant diffe~ence in computing

time if the plotting option is used. In real time 200

point represe,Jlt:

200*0.05=10 seconds

3-18



REFERENCES

1. R.M. Dressler, E.C. Fraser, "Optical Communication
and Tracking Systems," Final Report, Stanford

Research Institute, Menlo-Park, California,
October 1967.

2. M. A. Kisner, "Earth - Based Terminal of the Optical

Communication and Tracking System, II Program-'

mer's Manual, Stanford Research Institute,
'Menlo-Park, California, October 1967.

3.: J. Peschon, R.M. Dressler, L. Meier, R.E. Larson,

E.C. Fraser, O.J. Tveit, "Research on the
Design of Adaptive Control Systems," Final

Report, Vol. 2, Chapter 7, Stanford Research
Institute, Menlo-Park, California, September

1966. (Reproduced in Appendix E for tht;

reader's conv~nien~e.),

4. Design Analysis - Unified So-Band System for Apollo

Network, Engineering Report, Collins Radio

Company, 523-0556527-001D3M, 28 October 1964,

Contract NAS 5-9035.

3-19

/ ,



4. Simulation Results

4.1 ORBTRACK Testing

In order to test the original SRI ORBTRACK program,

after it has been adapted to the IBM 360/91 system, several

slmulation runs were performed. The same data as in some

of the original SRI runs were used and the results com­

pared to the ones reported in reference [1].

A Mars mission case was chosen. The details con­

cerning the input data are given on pp. 57-61 of reference

[1]. For the purpose of compari~on, the cases illustrated

in Figure 10(a), (b) and Figure l6(a), (b) of reference [1],

were run on the 360/91 system. The results of these runs

are reported in Figure 4.1, (a) - (f). These figures show

the time functions of the antenna angle errors. The ordi­
nate is in units of radians, scaled by a factor of ~O-6.

The abscissa is'scaled in.units of sampling, K. For these

runs the sampling period was ~t = .25 sec. The runs were

performed for a total of K = 400, i.e., t = K*~t = 400*.25

= 100 seconds. The, graphs in Figure 4.1 illustrate the

additional graphical capability that was added to the

program. The angles are in the elevation-azimuth reference

fiame. (In the new ATRK30 version it was converted to the

X,. Y angles).

Figure 4.l(a) shows the error between the estimated

(by thci optimal estimator) and the true (predicted from

trajectory data) ¢ angle. Figure 4.l(b) shows the same

for the 0 angle. Figure 4.1(c) shows the error between

the actual antenna position, for the ¢ channel, and the

true ¢ angle. Figure 4.1(d) shows the same for the 0

angle. The errors between the actual antenna positions

4-1



for the ~ a~d 0 channels) in Autotrack mode) and the true

• and 0 angles) are shown in Figure 4.l(e) and (f)) re­

spectively. As mentioned in Chapter 3 and in reference
[1], the system actually considered was an optical track­

ing system. However the plant equations happen to be of
the same form as these for the 30 foot tracking antenna

model. The difference is in the parameters only and in

the controller in Autotrack mode. As one may see, the

general form of the curves, as well as the range of values)

correspond to the previous results. [1]

4.2 Simulation with Nonlinearities. (ORBTRACK)

It is well known that the actual antenna control

system is nonlinear. Four types of nonlinearities, con­
sidered in this study, are shown in Figure 4.2 (a) - (d).

The abscissa is the control signal, u, at the input of the

nonlinearity, while uN is the control signal at its output.

All praetica1 servo amplifiers saturate for signals

with large amplitudes. This property is reflected in the

noniine~rity in Figure 4.2(a). The antenna has a finite

resolution for changes in attitude angles. If there is

a change around the zero angle, there exists a dead zone,

shown in Figure 4.2(b). Due to limited resolution there

also exists a quantizing nonlinearity in the loop, as the

one shown in Figure 4.2(d). In the 40~oot antenna the

hydraulic power drive contains quadratic nonlinearities of

the type shown in Figure 4.2(c).
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In the simulations that were performed, a non­

linearity w~s applied in the forward path of the control

signal. In other words, as soon as the control signal

u was calculated by the regular procedure, (assuming the

whole system is linear), a new cont~ol signal uN was cal­

culated, ~epending what nonlinearity was assumed, accord­

ing to Figure 4.2. The simulation indicates the be-

havior of a system with a nonlinearity in which the

control signal is calculated assuming that the system
is linear. The simulations were carried out using the
plant available in the ORBTRACK program. However, as
mentioned before, that plant has the same general form as

the 30 foot antenna control system. All basic data were

the same as the ones used in the simulation sho\vn in Figure

4.1. All the simulations with the nonlinearities were

performed in the optimal estimator-controller mode.

The saturation nonlinearity, shown in Figure 4.2(a),

was tried first with a very low thresh?ld value of ul = .002.
The results of this are shown in Figure 4.3(a), (b). As

one may see, the system is highly unstable, which should
-G .

have been expected for such a low value of u l .

By increasing the value of u l to u l = 1., the ¢

channel was stabilized, as may be seen from Figure 4.4(a).

Channel e still remains unstable as shown in Figure 4.4(b).

This channel is stabilized by choosing u l ~ 30., however it

still has a relatively high overshoot, (Figure 4.S(b)). The

behavior of the ¢ channel is basically the same as for u l ': 1.

as shown in Figure 4.5(a).

Another aspect of ·the optimal control process in­

volved was investigated, namely, the influence of the values

of the weighting coefficients of the control signals in the

performance index, b¢ andb0'~ The same runs, shown in
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Figures 4.4 and 4.5, were Tun with lower values of b¢ and

b¢ by a factor of 100. The corresponding results are
shown in Figures 4.6 and 4.7. As can be seen, there is

no drastic difference in the system's performance. How­

ever, comparing Figure 4.4(a) with Figure 4.6(a) and Fig-

'ure 4.5(a) with Figure 4.7(a), it appears that the under­

shoot in the ¢ channel is smaller for higher values of b¢

and be' The same applies to the settling value bounds;

for higher values of b¢ and be they are ~lower. There is
practically no difference in the behavior of the e channel.

4.2(b)

.002.was

The

The dead-zone'nonlinearity, shown in Figure

simulated with a small threshold value of u =I
results turned out to be identical to the linear sys-

tern, shown in Figure 4.1(a) - (f).

The quadratic form nonlinearity, shown in Figure

4.2(c) was tested for values of u l = .002 and a ~ 1.

The system was unstable with the response similar to the..
one shown in Figure 4.3(a), (b).

The quantizer nonlinearity, shown in Figure 4.2(d),

was simulated for the quaqtizing value of u l = .002, and

for different values of b¢ and be' The results are shown

in Figures 4.8 and 4.9. Comparing Figure 4.8(a) with

Figure 4.9(a), it can be seen that for lower values of b¢

,and be the undershoot in the ¢ channel is larger as is the

settling value. On the other hand, as may be seen from

Figures 4.8(b) and 4.9(b), for the e channel, for lower

values, of b ep and be the overshoot is lower. The settling

values appear to be the same. There is no undershoot for

the higher values of b¢ and be'
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An attempt to perform direct synthesis of single­

loop control systems with the nonlinearity in the forward

path is reported in Chapter 5. No linearization is per­

formed and the nonlinearities are treated directly. The

basic computational technique employ~d is that of Mathe­

matical Programming. Stabilization of the systems in­

volved is performed utilizing the criteria of Popov and

Jury and Lee. Extension to multiloop systems with mul­

tiple nonlineariiies is planned in future studies .

. -----

\
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~ 4.3 Simulation of th~ 40 Ft. Antenna

The data used in the simulation with the RATS

program were as follows:

Initial satellite position and velocity in
Earth centered coordinate system and their initial

estimates:

4-27
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. The ini'tial antenna state vector was:

State No. Actual Estimated

1 (Y, rad) -.13736 -.0022

•
2 (Y,rad/sec) o. O.

3 (Y ,rad) -173.6 -172.7m
Y II

Channel 4 (Ym' rad/s ec) O. o•

5 (internal O. O.
unidenti-
fied
state)

6 (disturb - o• O.
ance)

State No. Actual Estimated

1 (X, rad) -1.573 1.708

•
2 (X, rad/sec) O. O.

/

3 (Xm,rad) 1341. 1341.

X
Channel •

4 (Xm, rad/s ec) O. O.

5 (internal o• o.
unidenti-
fied
state)

. l; ~.~

6 (disturb - O. o•
ance)

4-28



Tracking s ta t ion' ini ti a1 location, (See Figure A-I

in Reference [2]):

~ = .0349 rad = 2 0

o = ~24725 rad = 14.2 0

The satelli te is assumed to be in a circular orbit (? 0 0 N.P1~
around the earth in the equatorial plane. The sampling

period was T = 0.05 sec. and the program was run for a

total of 5 seconds (100 sampling points).

The initial covariance matrix was:

P(%], = diag 1.5, .5, 0, 10- 18 , 10- 18 , 0,

..
-9 10- 9 ]10 '.' . . ,

l .J--. y-

For all 12 antenna

states

The measurement noise covariance matrix was:

R = diag [.625, .4, .25, .18, .1, .1, .625,

.4, .25, .18, .1] x 10- 2
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The stAte noise matrix Q was taken to be a
-1 7

diagonal matrix with all entries equal to 10 -;

The results of the run, (pointing error) were

as follows:

X Channel

Initial Overshoot, deg. 190

Initial Undershoot, deg. -24

Y Channel

7.7

-1. 0

·Acquisition Time (error

~. 1°), sec. 0.90
I

0.20

Steady State Error, deg. 0.001 0.004

Settling time (until

steady state is reached),
sec. 2.30 . 1.20

4.4 Simulation of the 30 Ft. Antenna

p(~ r<- I f'it W\ -)

The ATRK30 progranV was run for the 30 Ft. antenna

tracking station. The mission data were the same as in

the simulations reported in Section .4.1. The only differ­
ence was in the plant which in this case was the 30 Ft.

antenna control system, described in Chapter 3.
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The results of the simulation, which was run for

100 sec. were as follows:

X Channel Y Channel

Estimator Estimator
Controller Autotrack Controller Autotrack
--

Initial
Overshoot,
deg. .001 .055 a 0

Initial
Undershoot,
deg. -.0003 0 -.0005 -.0002

Steady State
Error, deg. .00006 .052 .00006 .0001

Settling Time
Sec. ·40 SO 40

.
90
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5.0 CON1~OL INCLUDING NONLINEARITIES

5.1 Introduction

As one may see from the description in the pre'­

vious chapers, the nonlinearities existing in the system

state equations, have been treated by ~ first order lin­

earization.

In this chapter, some direct methods of treating

nonlinear systems are proposed, and some specific examples

worked out. Initially, a method of computing the optimal"

control in a system containing a nonlinearity, using

mathematical programming, is pr~posed. In the second part

of the chapter a method of combining Popov's and Jury and

Lee's stability criteria for nonlinear system with a non­

linear programming algorithm, is worked out in detail.

This method may be used in automized stabilization and

co.ntrol of nonlinear systems in real time.

5.2 Optimal Control of Nonlinear Discrete Time Systems,

Survey

After the formulation of the Maximum Principle for

optimal control of continuous time systems was reported[l]

considerable work was"done in establishing a parallel ver­

sion of the Maximum Principle for Discrete Time Systems,

i.e., the so-called Discrete (or Digitized) Maximum Prin­
ciple." The extension has been made in reference's[2l

pt. III,[3-9 J to mention only a few. In about all the

references mentioned, necessary conditions for optimality

have been derived. However, in every case one is faced

with solving a two-point boundary-value problem. Indeed,
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none of the authors quoted have implemen~ed their results

in practical computations. It has been one of the goals

of this project to finQ an efficient computational solu­

tion for the design of optimal discrete-time control sys­

tems.

It has been found that at present the only way of

getting computational results in the design of optimal

discrete-time control systems, and especially in the case

of nonlinear problems, would be by the use of mathematical

programming. In the case of linear discrete-time systems,

one may use the dynamic programming approach, for low-
, [10]

dimensioned systems, as was done by Tou, for uniform

sampling. A suboptimal solution for non-uniform sampling
has been proposed by Br6ckstein and Kuo. [11] Although

mathematical programming, in the nonlinear case, has its
own computational difficulties, it is still the only method

by which numericai results may be obtained with relatively

little complexity. Similar ideas have also been expressed
"[12] .
by J.B. Rosen.

The use of mathematical programming should not be

regarded as a complete alternative to the Maximum Principle.

As a matter of fact, they are interrelated.

In a recent paper by Canon, Cullum and Polak,[13]

general necessary conditions for optimal control have been

developed. As particular cases of those 'conditions, the

authors have demonstrated that it is possible to derive

the Lagrange Multiplier's method, the Discrete Maximum Prin­

ciple, [6,8) as well as the theorem of Kuhn and Tuck~r for

nonlinear programming. [14J Similar results, showing the

connection between the Kuhn-Tucker theorem and the Maximum
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Principle have also been derived by L.W.
and by J.B. Pearson and R. Sridhar. [16]

Neustadt, [15]

Perhaps one

should regard mathematical programming as a way of com­

putational realization of the necessary conditions of

optimality, given by the Maximum Principle.

Linear and Quadratic Programming, which are particu­

lar cases of Mathematical Programming, have been previously

applied in simple configurations of Linear Sampled Data

Control Systems. [17-21] In this report the more general

method of Nonlinear Programming[22;23] is applied to Non­

linear Nonuniforrnly sampled, Discrete Time Control Sys­
tems. [24,25]

5.3 Formulation of the Problem

The dynamic system under consideration is governed
by the following set of state equations:

..
l.c i +1) ::: .!Jl.(i) ,~ (i) , i ]

i = 0,1, ... , N-I

where:

rei) ::: n-dimensional state vector at the

discrete time instant t = t.
1
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u (i) = m dimensional control vector at t = t.
1

f = nonlinear, time-varying, n-dimensional

vector function

N = maximal number of discrete time intervals

considered; the intervals are in general

unequal

At each discrete sampling time, the system may

be subjected to an additional set of equality and in­

equality constraints;

h.[y(i),u(i)] - 0;
J - -

j=l, ... ,p

k=l, ... ,q

(S

(5

where h j , gk are generally nonlinear functions.

It will be assumed that the initial state vector

is specified:.

rCo) = l.o

5-4
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The general optimal control problem for the dis­

crete time 'system under consideration, could be formu­

lated as follows:

Bring the system described by equations (S-l)

from the initial state ~o' into a target area described

by:

a[r(n)] > 0

where a i~ a ~-dimensional, nonlinear, vector function,

so that the following performance index is minimized (or

maximized) :

(S-5)

N

J = L
i=l

F [1. ( i) ,~(i - 1) ,i) (5-6)

where F is a nonlineai time-varying function, subject to

the constraints (5-2), (5-3).

Considering the formualtion of the control problem,

as well as the expressions involved, one may see, that it

constitutes a classical mathematical programming problem

with (S-6) serving as an objective function, (S-I), (S-2)

as equality and (5-3), (5-5) as inequality constraints.

A suitable algorithm is to be chosen for the numerical
solution of this problem. In the following section, an

example illustrating the method, is presented.
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5.4 C~mputational [;~~mple

A part of a 40' ft. antenna tracking control system
is considered. The system consists of a separable linear

and nonlinear subsystem. The dynamics of the system are

represented by the following set of difference equations:

r(i+l) = A l.(i) + bNL [u(i)]

where,

A = n x n constant matrix

b = n-dimensional constant vector

(5-7

u(i)
-0

= scalar control variable at t = t.
1

NL = a nonlinear scalar function

The system under consideration is uniformly

sampled. In view of this, one may now express the state
. . [10]vector at any tIme Instant t = tN' as :

N-l
N + ,"'l.(N) = A l.(o) L.-t

i=o

AN- i - 1 ~NL[u(i)] (5 - 8)

where l.(o) is the initial state vector, aiium~d known.

5-6,



The output of the system is represented by the

first component of the state vector, Yl. The purpose

of the control action is to bring the output Yl to

align with a prescribed reference position YR. This con­

trol action, should be done with minimum expense of

energy. Following these requirements the following per­

formance index was formulated:

Minimize

N

J = L
i=l

(5-9)

where W is a weighting factor, and N is the maximal ~umber

of sampling instants considered.
-e

The meaning of the first term in the performance

index in eq. (5-9) " is minimization of the squared error,

at any time instant considered, between the actual and

the desired output position of the system. The second

term, represents the minimum energy requirement.

From equation (5-8) it follows that:
\

i-I

1 + ~ ~.Yl (i) = All-Co) _

j=O

Ai - j -lbNL [u (j ) ]
1 -

5-7
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· where Al represents the first row of the matrix A.

Substituting eq. (5-10) into eq. (5-9), one obtains:

+

(5 -1.

As one may see from eq. (5-11), one has a non­

linear performance index, or objective function for the.

solution of this problem.

Additional constraints limiting the amplitude of

the control signal were posed:..

- u < u(i) < um m

The objective function in eq. (5-11), along with the con­

straints in eq. (5-12), form a nonlinear programming prob­

lem, with N variables and 2N inequality-constraints.

The algorithm applied for the solution of this problem,
[26]was the SUMT method, on the IBM 360/91 computer

system.

5-8
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The actual system considered, was modeled as a

third order system, for which:

[

-,114

A = .233

-.275

1.000

- .114

.233

0,]1.

O.

_[.179]
b - .550

.115 .

The nonlinearity considered was of the saturation type,

modeled by a hyperbolic tangent function:

NL(u) = S tanh(u/S)

where S is the output of the nonlinearity at saturation,

or in this case, when u+ oo • On many occasions, a satura­

tion is modeled using sharp corners at the passage from

the linear region to saturation. In many practical systems,

like in servo amplifiers, this passage is rather smooth,

and the function in eq. (5-13) seems a suitable model to

represent it. In this example, the saturation value was

chosen to be S = 10.

The maximum allowed control signal amplitude, was

fixed at urn = 10. The initial state vector was:--

5-9
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~ ,

I:

and the desired reference value, YR = 1. O. The program

was run for a total of 20 sampling periods, i. e. , N = 20.

The results are summarized in Table 5.1 and in Figures
5.1 and 5. 2.

5.S Automized Stabilization and Control

Automized stabilization and control is a problem

of primary importance in the field of computer real-time

pr~cess control. The problem is p~rticularly difficult

when one considers control of nonlinear processes. While

there exist relatively easily programmable stability

criteria for linear sistems[2], the situation with non­

linear systems is entirely different. One cofild of course

employ an approximate linearization of a nonlinear system

and then apply stabilization algorithms suitable for

linear systems. This kind of approach ~ay be suitable to

certain classes of systems, however it may involve untoler-
-4

able errors in others. Therefore, there is a definite need
-..

in-formulating stabilization algorithms directly applicable

to nonlinear systems and at the same time - amenable to

efficient computerization in real-time. This problem is,

no doubt, of considerable interest in many industrial

applications, however, to the best of the author's know­

ledge, the problem has not been treated and solved in the

literature.

In this report, several stability criteria for non­

linear systems are reformulated in a form directly appli-

cable to real-time stabilization and control of nonlinear

systems, using a time-sharing digital computer system. Two

basic configurations of computer control of nonlinear

processes, are considered.
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TAS LE 5. 1

SAMPLIN(; INSTANT OUTPUT. CONTHOL SIGNAL ERROR
i Y1 (i) u. 1 e i =Y1(i)-YRI-

I .09494 1. 1075 - .905063

2 1. 22355 2.3787 .223548

3 1.04979 .5408 .049791

4 1.00955 1. 3428 .009553

5 .97008 L 2791 - .029922

6 1.01657 1. 2225 .016570

7 .96834 1. ~60 1 - .031656

8 1.02376 1. 2402 .023765

9 .97652 1. 2814 - .023479

10 1.03857 1. 2390 .038575

11 .96528 1. 2212 - .034724
.'.-.

12 1. 01545 1.2390 .015446

13 . .97425 1. 2528 - .025753

14 1. 02848 1. 2791 .028779

15 .98529 1.1200 - .014'108..
16 . 99706 1.2555 - .002943

17 .98556 .. 1. 2476 - .014439

18 1.00052 1. 2287 - .000521

19 .97809 1. 2304 - .021913
..

20 .99744 1. 2589 .002564-

The total computing time was 12.19 sec. on the IBM

360/91 system. The value of the optimal performance

index was:

J - .8803
o

.1
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I
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!
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FIGURE 5.1 THE OUTPUT A~D THE CONTROL SIGNAL

e.
1

O.

2 4 6 8, 10 12 14 16 18 20

'. '.-

-1:

FIGURE 5~2 THE ERROR
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(1) Parameter' Adjustment Control. In this case,

the parameters of the system may be adjusted

through direct dlgi tal control. However, the

computer system is actually outside of the

control loop, which is a continuous, nonlinear

feedback control system. The detailed treat­

ment of this configuration has already been
reported in detail previously,[28].

(2) Digitally Controlled System. The computer

system is actually a part of the control loop

in this case. To be more specific, the con­

troller of the system is programmed on a real-

time special purpose.computer, or on a time­

sharing extension of a universal computer

system. The parameters of the controller are

actually input data to the subroutine which

realizes the digital controller. The system

considered, is naturally, a sampled-data non­

linear control system. [34]..
The basic algorithm proposed for the system of type

(2) will be discussed in section 5.7 and an example pre­

sented in section 5.8. The stability criteria used were
[29] .

Popov's for the system of type (1), and Jury and Lee's
Lee's[30j for the system of type (2). The stability cri­

teria are reformulated with respect to the particular

process control configurations considered. As a result
of the reformulation a nonlinear programming problem[22,23]

is obtained. The SUMT algorithm, originated by Fiacco and

McCormick[26] is then applied to the numerical solution of

the problem. As a result of this calctilation a set of

the system's parameters is obtained, which stabilizes the

system and satisfies a set of performance criteria at the

same time.
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It should be noted, that in the case of the system

of type (2), the nonlinear programming problem derived,

involved complex variables. This type of problem has not

been reported as solved in previous publications. The

SUMT algorithm was suitably modified for application to

the solution of nonlinear programming problems involving

complex variables. While applying the SUMT algorithm,

there is the option of choosing various unconstrained

minimization techniques. A comparative study involving

the use of some of the available techniques has been con­

ducted and will be described in section 5.9.

5.6 Parameter Adjustment Control

I·

A general process control system with a nonlinearity

is considered, as shown in Figure 5.3, G(s,E) is the trans­

fer function of the linear part of the system and it depends

in general, on a parameter vector £. The nonlinearity satis­

fies the following.. condi tions:

~. nCe) is defined and continuous for all values

of e.

b. nCo) = 0 and enCe) > 0 for all e 1 o.

One possibility of accomplishing computerized con­

trol of the system, is by adjusting the components of the

parameter vector E, through the scheme in Figure 5.4. In

general, G may contain both the original plant as well as

the controller.

5-)4



r e u c,

:t.....+ ...... NL - G(s,p)- -
4~ .

(a) System Block Diagram

u

---.

u = nee)

e

(b) The Nonlinearity

FIGURE 5.3 THE CONTROL ~YSTEM
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Central
Computer
System

SUMT Program on
Tape

Input of
Desired Changes
in Performance

Time-Sharing
1o@ -t;....J;:(,Computer
~ ~ Console'

Transmission of
Adjus~able Param­
eter Values

...... ..
po

... Plant
G(s,p)

FIGURE 5.4 PARAMETER ADJUSTMENT.

5-16



,
It may be required, that during the process, the

system should work under varying performance criteria.

At all times, stability is to be maintained, and the para­

meters E are to be adjusted accordingly by the computer.

In view of the presence of the nonlinearity in the loop,
classical methods of linear analysis[27] may not be used.

The particular nonlinearity, which represents a wide class
used in practice, corresponds to the conditions of Popov 1 s[29]

stability theorem. The theorem states that the system

will be absolutely stable if for

o < nCe) < K
e

Th~rc exists a non-negative real q such that

where

K is the maximal aJlowable instant gain (ratio between

input and output) of the nonlinearity. Expression (5-15)

5-17
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:.:t"

may usually be expanded into a set of inequalities which

are functions or £' K and q:

q > 0

j = 1, .•• , M

Formulating a general performance index

Minimize (or Maximize) J = f(~,K)

and adding any additional constraints, as required by
. various practical considerations, one would obtain a
classical nonlinear programming[22,23] problem.

Example 1. A Third Order System. The transfer
function of the linear part of the system is

(5-16)

(5-17)

1 (5-18)
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The parameter vector i$

i

Introducing x = 11K and applying (5-15), one obtains[28]:

2222242+ [x(40 a w -2a w +w ) + 2q8aw + qw. n n n n n

2 2 4 2- 20w -a] w + (xa w +aw ) > 0
n n n

..
Since both x and q are non-negative, and since equation

(5-19) contains·terms of even order of w only, the

inequality (5-19) will be satisfied for all w, if the

following inequalities are satisfied[28]:

2 222
x( a - 2wn + 4 0 wn ) - q > 0

20w - a > 0n

5-19 '

(5-19)

(5-20)

(5-21)
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In addition the following constraints have been imposed:

6: <6<6mIn max

a. < a < amIn max

w < wn nmax

I
The performance index for this example was chosen

-- according to the following considerations. On many

occasions, one would like to adjust the system parameters,

so that one could work with the maximal forward gain

(which in this case happens to be K), and still retain the

stability of the system. On the other hand, one may want

to have the shortest possible rise time, which would re-.. .
quire working with a low damping ratio 6. However, the

requirement_of maximizing K (or minimizing x = l/K) would

require a higher value of 6. The two requirements drive

the optimization problem in opposite directions. In the

combined performance index, one should assign an appropri­

ate weighting factor to show the relative importance of

both requirements. Since both x and 6 are non-negative,

the performance index could be chosen to be linear instead

of quadratic:

Minimize J = cx + 6

(5-22)

(5-23)

'.".

o.J
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As a result of maximiiing K one may obtain the value of K

at the limits of stability. In this case the result should

be only indicative; it does not mean that "the system should

actually be working with this maximal value. The following

limiting constraints were imposed, in addition to the

stability constraints (5-20), (5-21):

. 5 < <5 < • 707

.1 < a < 1.

w·< 3. rad/sec
" "'-

-------.

5-21
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Thc nonlinear programming problem was solved for difrerent

values of thc' ~eighting factor c.

The SUMT program[28] was used in the computations,

performed on the IBM 360/91 computer. The results obtained

are tabulated as follows:

c .0 1 . 02 1 .05 .10 .15 .18 .20 .50
I

' .
X . 4.00 I I

mln 4.00 .910 i .312 .128 .081 ! .066 I .064 t
I

r

K .25 .25 ! 1.100 13.200 7.810 12.35 I is.1S 15.6: ' ..I ...max I i ! ,

0 .5 .S .612 I .654 .676 .684 I .687 .687
I ! i

I

1. 861 i i
2.972,

.~

.5 1.414 I 2.420 2.783 2.999 f .... w, .5 I I i ~.n
I

a = 1. for all cases

For each value of c, the run time for the solution of

the nonlinear programming problem was about 1.30 seconds.

Each problem included five variables (x, a, 0, wn ' q) and

seven inequality~onstraints.

'----Example 2. A Fourth Order System. The general fo:'"T.1

of the fourth order sys~em was chcsen to be:

G(s ,p) = 1

5-22
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The adjustable parameter vector .in this case is:

°1

wnl
E. =

°2
tUn2

In the same manner as for ~hc third order system,

one obtains the following stability inequality constraints
[28 J •

,
\.

5-23
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The performance index was:

Minimize J = ex + °1 + 02

The additional constraints:

.5 < °1 < 2 •

• 5 < °2 < 2.

W
n1

< 3. rad/sec.

W ? < 3. rad/sec.n ...

The rcsul ts were <is follows:

c .01 .05 .10 .20 LO

xmin .251 .163 .138 .121 .100

Kmax 3.98 6.14 7.25 8.26 10.0

°1 . 708 . 710 • 712 .714 .723

wn1 2.999
. I

2.999 3.0 3.0 3.0
!

6 2 I .5 .5 .5 .5 .5

-:;;2] '-
.236 I .398 .496 .611 .916__I --- "'
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For each value of c, the run time for the solution of

the nonlinear programming problem was about 1.45 seconds.

Each problem had six variables ex, 01' wnl ' 02' wn2 ' q)
and nine inequality constraints.

5.7 Digit~lly Controlled System

The system under consideration is sketched in

figure 5.5. The controller of the system is part of a

digital computer. To be more precIse, the digital co?trol­

ler is realized as a subroutine programmed on the computer

used for the control purpose. Either a special purpose

control computer or a time-shaiing station connected to a
central computer system may be used. For instance in the

case of the digital control of the 40 ft. antenna tracking

system, to be' discussed in section 5.8, a SDS Sigma 5
computer is used, and the digital controller is programmed

in assembly language .•

The system considered (figure 5.5) is a sampled data

nonlinear system. In this case, a different stability

criterion should be used, namely the Jury and Lee criterion

[30]. The following conditions are imposed on the nonlin-

earity:

a. nee) is continuous

b.

c.

nCo) = 0

K > nee) > 0, for e 1 0
e

,.

d. dn(e)--cre- < K'"
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I . Computer I

System
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n 1e)
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I . Il- Digital Controller I
-- -1

G(Z,p)

Plant including
zero order hold

-y-I
I I

I

"--- -:-- -1..

FIGURE 5.5 DIGITALLY CONTROLLED SYSTEM
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·If G*(z) is the overall z-transfcr function of the linear

subsystem, including the controller, the Jury and Lee

theorem states that the system is absolutely stable if a

q exists such that:

JL (z) Re { G*(z) [ 1 +q ( z - l) ]} + i ~ I (z-l)G*(z) /2 > 0
2

(5-30)

is satisfied on the unit circle z = exp (jwT), where T is
the sampling period.

The computational algorithm in this case, would

_have to run in two phases:

(1) Establish, for which value of z, does the

left side of inequality (5-30) have the

minimal value.

(2) Substitute4 the value of z obtained in phase

(1) into inequality (5-30), and use it as a

basis for the nonlinear programming problem

to establish the optimal parameters that would

stabilize the system. Of course, one has to

formulate a suitable performance index and

one may pose additional constraints.

This algorithm may he applied to a variety of dig­

itally controlled. systems. For instance, it could be used

in atitomized stabilization and control of antenna tracking

systems. Two examples simulating the implementation of

this algorithm are presented in section 5.8. A flow chart

illustrating the propo~ed algorithm is sketched in figure

5.6.
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h.U~J = 0

..
'.It

FEED OPTIMAL
PARAMETER SET INTO
SYSTEM

.-

SUBSTITUTE
J(PJ = J(fJ/NEW

J(P} YESCH AN GED? >-~.:t-- ......

NO
n

STANU BY
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5.8 pigitally ~ontrollcd Antenna Tracking System

As an illustratlve example of the stabilization

algorithm proposed, the case of computer control of a

40 foot antenna tracking system of the NASA Goddard Space

Flight Center was chosen. The basic system configuration

is sketched in figure 5.7. The z-transform transfer

function of the linear part of the plant, including a zero­

order-hold, is:

G(z) = .179z2
+ .55z + .115

z~ - .114z2 + .233z ., .Z75

The nonlinearity is assumed to satisfy all the con­

ditions specified in section 5.7. Otherwise, no particular

configuration is assumed for the nonlinearity, which makes

the solution applicable to a wide class of system ...
The.~igital cont'roller was chosen to be of second

order:

D(z) = = -1
1 + bIz

The parameters of the digital controller, ao ' aI'

a Z' hI' b Z are unknown variables and should be established

in the process of the solution. The digital controller

may be programmed on 'a digital computer according to well

established methods[3IJ. The choice of a second order

controller is somewhat arbitraly and rather based on

experience. There is no loss of generality in this choice,
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since the same method ~6uld apply to any order of D(z).

The only difference it would make is in the number of

variables. One should, of course, try to sol v.e a prob­

lem with a minimal number of unkn~wns, so one would not

want to make the order of D(z) too high. Since the plant

is of third order, it is reasonable to choose the control­

ler of one order less. Anyway, the choice of the order

of D(z) is a minor issue of this work; what is important,

is the method of establishing the actual values of its

parameters. These parameters are physically input data

to the subroutine which realizes D(z). The communication

between the controller and the continuous time plant is

accomplished through AID and·D/A converters.

The transfer function· of the whole linear subsystem,

which includes the plant and the controller, is:

G*(z) = D(z) G(z) =

~_= k·a1z -1. a 2 z - 2) (. 179 z -1•. SSz - 2•• 11 S Z - 3)

(1. bIz -1.b 2 z - 2) (1- .114 z -1•. 233 z - 2 - • 27 S2 - 3)

As mentioned in section 5.7, the first part of the

algorithm involves finding the value of z for which the

left side of inequality (5-30) is minimal. I~ other words,

one would like to find the value of z for the worst case

whenthe stability of the system is mostly "th'reatened."

It should be remembered, that the left side of (5-30),

3L(z), should be non-negative in order to satisfy the
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stability criterion. According to this criterion, z is

restricted to be on the unit circle in the complex z-plane,

i. e. ,

z (S

or

= 1

One of the simplest ways of finding the value z, m
which minimized JL(z), is by direct search, since only one

independent variable z is involved. The restrictions in

(5-34) 6r (5-35) should of course be preserved. This is

done simply by performing the search using the real value

of z, Re(z), as an independent variable, and then comput­

ing the imaginary value of z by:

(5

, ,
I'

1m (z) (5

In this example the search was performed by direct

scanning over the values of Re(z) at a fixed interval.

Of course, one may use more sophisticated search methods

if desired. The search took 0.3 seconds on the IBM 360/91

system. The results obtained were:

Zm = -.270 + j.963

JL(z ) = -7110.0m (S

The same problem was also solved~s a
gramming problem using the SUMT[26] method.

programming problem was formulated as:
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Min ~JL(Z, ,K, K"', q)
I

<: K . I"'" imax' f\. I
< K~ .

max'

< q .
max' I z j (5-38)

As one may see, the objective function in this problem

dcpcnJs cxpficitly on a complex vari~ble z and on a complex

function G(z). (See equation 5-30). In this problem G(z)
is used instead of G*(z) in equation (5-30). For the purpose

of the numerical solution, instead of z, one works with two

variables xl' x2 , which are the real and imaginary parts

of z:

z = Xl ... J x2

The complexity of Z Cind its connection \Vith x =Re(z) is

stipulated in the progl'am by the following two FORTRAN IV..
statements:

COMPLEX Z

EQUIVALE~CE (2, XCI))

This itutomaticl1ly implies that X(2)::x
2

is the imaginary

part of z.

The conditions in equatioll~ (5-34) or (5-35) were

taken care of by imposing an explicit equality constraint.

(5-39)

2
+ x).., - i- = 0
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Although the constraints in this case (see equations

(5-38) and (5-40)) are very simple, the objective function

JL(x l , xz' K, K', q) is a very complicated function of all

the five variables of the problem. Although JL itself is

real, it does depend on complex values z and G(z) explicitly,

which makes the numerical solution of the nonlinear pro­

gramming problem quite difficult. In this case~ a special

~echnique of unconstrained minimization, developed by

Fiacco and McCormick[26] was adopted. This technique does

not require the explicit calculation of the derivatives of

the functions involved. This property is important in

this solution, considering the complexity of the JL function.

The solution obtained in this case was:

zm = -.288 + j.958

JL(z ) =
m ..

-7101.0

K = 48.4 (5

K' ~-q = 100.0

This example ran for about 28 seconds on the same system.

One may argue that the SUMT run was unnecessary, however

one would not be able to perform the search without the

appropriate values of K, K' and q, which were obtained in

the SUMT ru~. The search performed after that is needed,

since the parti~ular algorith~ employed in conjunction with

SUMT is knm.,rn for its lack of precision., 'vhenever compli~

cated funciions are involved. Still, by comparing the
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results In equations (5-37) and (5-41), one may see that

they are not too far apart, (.13% for)L(zm))' Obviously,
the result of the search, equation (5-37), was picked,

since in it JL(zm) is smaller. The search revealed that

the value of JL(z) is quite flat in that region;

JL[Re(z) = -.30] = -7074.2

JL[Re(z) = -.25J = -7078.5

So, that precision within the second significant figure

of Re(z) is not critical.

The value of zm in equation (5-37) was used in equa­

tions (5-30) and (5-33). This time, the value of G*(z) of
equation (5-33) was substituted into JL in equation (5-30).

Now one forms a new.enonlinear programming problem:

where

E = [K,~i,q,ao,al,a2,bl,b2] is the parameter vector

in this example.

P is a closed set; in this case the values of all of the

parameters involved were" limited in size. The limit im­

posed on all parameters in"this case was:

(5-42)

.T: '._

Ip·11 < 100.0; 1·- 1, ... ,8
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" . ,

..'

The performance criterion In this case was of the form

Max J = K T W K'

where w is a weighting factor, in this case chosen as
w=l. The meaning of the problem, is that one would like to

find a set of parameters R, which would permit operating
the system with maximum values of K and K' while keeping the

system stable.

Since the SUMT program is geared to solve minimi­
zation problems the performance criterion is reformulated:

Min J(K, K') = -K -wK'

The result~ obtained in this run, which took 5

seconds on the IBM 360/91 system, w~re:

K = K' = 100.0 (i.e., working at the limit)

q = 15.0

ao
::; .131

8 1
::; .063 b l

::; .100

a') ::; .129 °2 = .094
~

Or, 1n other words, the digital controller is:
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D(z) = .131 + .063z~1 + .129z- 2

-1 - 21 + .100z + .094z

(5-46)

The actual. value of JL for the mentioned parameters

was 0.08. This is quite close to the stability limit of

zero. Therefore, in actual operation, one should work

with somewhat lower values of K and/or K'. In solving

problems like this, one should set an a priori limit of

K and K' about 20% higher than really desired. It should

be stressed, that the search for zm ,is done unfrequently,

and that only if there is a considerable change in the

plant's parameters. In view of the short computing times

for the parameters of the digital controller, this algo­

rithm could definitely be employed in real-time control
(If processes ,.where changes in system requirements do not

occur mOTe often than about every 10 seconds. This could

indeed c.over a very wide class of computer controlled.

processes.
r

5.9 Comparative Study of Minimization Techniques

In real-time computer control the computational

efficiency of the algorithms used is of crucial importance.

The SIIMT program, proposed for use in computer controlled

algorithms involves the sequential use of unconstrained

minimization techniques. There is a wide variety of
available techniques[26,32] that could be used. In order

to evaluate their effectiveness for the particular class

of problems discussed in this report, a comparative study

was performed. As an example, the fourth order system,

discussed in section 5.6, was chosen. The methods tested

could be classified within the gradient methods using
. bl .. [26,32,33]varla e metrlCS.
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----- To describe the methods used, the following notation
is introduced: .

x· = the solution vector at iteration i, of
-1

dimension n.

f(~) == the objective function.

'If. == the gradient of the objective function at
1

point x· •-J.

y. = the unit vector in the direction of the next
-J.

step from x· •-J.

d. = the step size of the next step from x· •
J. -J.

S . = x. 1 - x· = d.y.
-J. -1 + -1 1-1

}:i = Vf. 1 - Vf.
1+ 1

A
4>2

the Hessian matrix== [a flax. ax.] =
1 J

---..............

y: = [lD ' }:l' l'..i-l]1-
••• J

y. = H. Vf.
.' -1 1 1-

H. == the metric
1

The methods tested on the IBM 360/91 system and the
appropriate res u1 ts are tabulated as follows:
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COMPUTI},iG
NUMBER OF TIME

METHOD THE RECURSIVE FORMULA ITERATIONS IN SEC ..

! 1. Newton H. -1 (x. ) 61 1.40-- A
Raphson 1 -1

2 • Reduced [ -1 J[ -1 r-Y1 YZ -Y 1 YZGradient !.i+l= In . In· \1fi+l;Yi+lri+!=O 114 2.10
Projection

(H. r· ) T
3. Projected (H·r· )

H. 1 H. +
1 1 1 1 156 2.-93=Gradient 1+ 1 T
ri Hiri· ;.

(s.-H·l·) T4. Unsymmetric (H .r· )
Variable Hi +1 H. + -1 1 1 1 1 344 '6.13- TMetric L

1
li Hilil

~ified (s.-H·t·) T I(s.-H.z..)
H. -1 1 1 -1 1 1I FIe tcher- H. 1 = + 354

!
6.63 I1+ 1 T

(s.-H.l.')I Powell l.i -1 1 1
I j

! T 'V£. 1\1£. 1I 6. F1etcher- 1+ 1+ I

r. 1 = -\1£. 1 + ~. 399 7.66 i
Reeves -1+ 1+ -1 'V£ . T \1£ . I1 1.

I

7. Unsynunetric (s.-H.y.)s. T
Variable H. 1 H. + -1 1.....1-1= 580 9~67
Metric Z 1+ 1 T

s· li-1,

8. Fletcher- (H·r· ) T T
(I1.l.' ) s . s .

Powell,:, H. 1 H. 1 1 1 1 -1-J.= - + 2015 32.241+ 1 T TDavidon li Hil-i s. z..
-1 1

I 9. Steepest H. = I 4141 57.53 If Descent 1 n
.......;..-

In the majority of the methods, Ho=I , and H. is being reset,n 1.

to HO after every n-1, or n, or n+1 steps.
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The reader should be cautioned not to interpret

these results in a universal manner. They only mean

that for the particular type of problem under consider­

ation, the Newton-Raphson technique proved to be the

most effective. For a different problem, the results

may be different.

5.10 Conclusion

It was demonstrated that Popov's or Jury and Lee's

stability criteria could be reformulated and combined with

a nonlinear programming technique in order to. generate an

algorithm for digital computer, real-time control of non­

linear processes. The computing times in the simulated

cases, turned to be quite small; less than 2 seconds' in

the case of Popov's criterion, and about 5 seconds in the

case of Jury and Lee's. It is easy to see that the same

algorithm may readily be applied to higher order systems.

It would of course involve more variables and more comput­

ing time. Thi~ aspect .~hould be investigated in more

detail in future studies. There is no restriction whatso-
'-.

ever on the performance criterion to be used.

The algorithm proposed, should be applied to other

kinds of nonlinear process control systems and actually

implemented in real-time, as a natural extension of this

study.
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6. ,Conclusions

It was demonstrated by the simulations performed

that optimal estimation-control techniques can be applied

to antenna tracking systems. Using the optimal estimator­

controller configuration, the system errors are estimated

and ~roper correction in the controller is performed. As

a result, at least under ideal conditions, a much smaller

pointing error is obtained. In the simulation of the tele­

scopic tracker, the ratio between the autotrack and the

optimal estimator-controller error was 20 to 40. In the

simulation of the 30 ft antenna, the ratio was up to 850

for the simulated Mars mission. In the near Earth Trajec-.......

tory~simulation 200 N.M. circular orbit with the 40 ft

antenna a steady state pointing error of 0.001 to 0.004

degrees was achieved. Present standards for near-Earth

missions are approximately ten times higher.

It was shown that insertion of certain types of

nonlinearities in the contro~ loop of the tracking system

causes instability. It is also a fact that nonlinearities

are inherent in the actual tracking systems, as the 40 ft

antenna system. It was further shown that using the math­

ematical programming approach the optimal control signal

can be synthesized, taking into account the existing non­

linearities as they are, without resorting to approximate

linearizations.

Further work is recommended in the following areas:

1 . Work out actual implementation of optimal

estimator-controller, in real-time, connecting

specific computers to specific tracking

systems.
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2 . Continue investigation of actual implementation

of nonlinear synthesis.

3. Apply the same methods to a wider area of dif­

ferent systems. One possible area of immediate

interest would be optical tracking systems.
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MEMOHANDUM 7

APPLICATION OF OPTIMUM ESTIMATION AND CONTHOL
nlEOHY TO SATELLITE THACKING PROBLf~'1S

I INTRODUCTION

The purpose of this memorandum is to derive opt.imum (approximately)

estimation and control techniques for the satellite tracking problem.

The problem is nonlinear, as will become apparent in subsequent sections.

Some preliminary studies are described in Refs. I and 2. * The present

study has resulted in the development of a digital computer program t.hat

C implements the operation of the optimal estimator and controller in con­

junction with the satellite tracking system.

A solut.ion to the problem can be obtained by solving the estimation

and control portions separately. Since the satellite tracking problem

is nonlinear, the assumption that the estimation and control portions

separate may not be optimal in the strictest sense;3 however, since the

estimation and control poriions are weakly coupled (as will be seen In

subsequent sections), the assumption of separation is quite reasonable.

Th e est i mat 0 r. , whieh g (> ne I' ate san 0 p timum est i mat e 0 f the pre sen t

state of the system (satellite and antenna control system), IS deri~ed

in Sec. III. The estimation problem is solved by employing the extended

Kalman filter, which necessitates the linearization of the satellite

equations and the measuremen~ equations.

The estimate of the system state is then employed in the controller

to compute the optimum control with respect to the given performance

criterion. The control problem {s solved in Sec .. IV by making the ap­

propriate linearization Bnd applyiIlg some new results in the theory of

linear" optimal control.

• flef"r"n'."' ore I i_ted at the end of the memorandum.
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I I PHOBLEM FOInIlJLATION

Figure 1 1S a block diagram of tllC satel] ite tracking system. TI.('

mathematical models for thc various parts of the system arc give,} L~low.

SATELLITE

v

ESTIMATOR

"­«

CONTROLLER
u ANTENNA

CONTROL
SYSTEM

FIG. 1 SATELLITE TRACKING SYSTEM

A. SATELLITE'"

JL~xI.. xl ~- ---
~ r 3_

~

JL~x2
X ---'2

r 3~

~

-/

./' JL~X3
X3

- --..!. (1)
~ 3r

~

where

r (xi ~ + x 2 + 2 ) ~
~ 2 X3

~ ~

•
The terl!l"~atellite"doe. not necessarily tle.n • near-earth .atellite: it could, Cor in.tance, reCer to
a deep-space probe.



the prodllf't of the 11l1ivprsal
COllstant. allo tlll~ mass 0 f th(~

gravitational
C' art h,

x I x 2 '
t

x 3
t

the position r-oordiIlat.es of tIll; satellit.(~

with !'('spect t.o an eal'th-celltcl'c~d Carte­
sian coordillate system. (The 3 axis is

t

co i II C i d ('II L lI'i t h t. h (~ en r t h ' s pol a.. a x j s ,
all d tile lUll d 2 a x (~ s lie i II t h I~ e q 11 a t. 0 ria J

t t

plane, complc·tillg a I'ight.-handed orthogoll,,1
set. )

....

It should be noted that the abovc di fferential c'luatiolls (l) nH~l'cly gl vc

all appl'oximate descl'iption of the motion of the satellite, and arc us(~d

only to obtain the solutiolls to the estimation alld ('ollt.I'ol port.iolls of

the problem. The actual* t.rajectory of the satell i t.e IS gcnC'/'ated f,y a.
more exact computeI' progl'am model devcloped at :'JASi\ Allies Hcscaq;h Center,.

~Ioulltain View, California.

Til e d iff ere n t i ale q II a t i 0 II S (l) can Lcpu tin to s tat c val' i a b 1p f () ,. m .

upon definition of the following variables:

~l

..-----..•.

ComlJining Eqs. (1) and (2) yields

* l11c term ~·Q('tuullf refer.'\ to t.llr. trnjef.'tory til tH.' t"i.It·~.r:11 lJy th~ UJlt"UIiIi til tilt: (:lIWI'"(t'1" ~lmlll;ll11111•

.,
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-p.a 3
(3 )

where

II-r (a 2 .. a 2 .. a 2 ) '2
• 1 2 3

After defining the six-dimensional state vector of the satellite us

x •
(4 )

the differential equations (3) can be rewritten concisely as

.. x • (5 )

whe:r_e f(x.) IS a six-dimensional

Eqs. (3).

vector function of x as gIven by•

Equation (5) IS a norl! incur di fferential equation; however, In

order to take advantage of certain results In the theory of linear

estimation and control, it IS necessary to lineari7.e this equation.

This concept wi.ll ue cla,"jfied in Sees. III and IV. Linearization of

Eq. (5) is achieved by considering x to be COlJlposed of some nominal•
""-

trajectory XO and a perl.llriJation from the nominal x :
• <

x •
""­

.. x • (6 )

Upon expanding Eq. (S) ill a Taylor senes about < and neglecting' second

and higher-orde,', terms, the linear perturbation equation is found to I. .. :

X
t
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Since the p;oblem 15 to be simulated on a digital computer, it 1S

essential to convert the dijo("l'ITIlt.ial equat.ion (7) int.o an equivalent

difference equation, This call L,e C1onl' by notinl; that. t.he time dcriv<I-

live is approximately given by

or

where

? (k)•

1)
? (k) - ~' (k - 1). ,

6t

~~ (h -°1) t;;' (k - 1)/\(. , UJ)

;.~

7-5



·Subsl.il.lIl.ing Eq. (7) illLo (9) ~IVl'S

~ (k)
~

{T + 3[xO(k - U]~t}~ (k - 1)
~ ~

( 10)

where the transition matrix IS glvell by

<IJ (k - I)
z

( I 1 )

Since Eq. (10) IS only an approximate mathematical model of t.he

satellite motion, a random forcing term will be included as follows in

order to account for the imprecise nature of this model:

~ (k)
~

<1> (k - l)~ (k - 1) + r (k - l)w (k • 1)
% t .t %

(12 )

where

0 0 0

0 0 0

r (k - I) r 0 0 0
Z A 1 0 0

0 I 0.. 0 '0 I

w (k - 1)
z 1

w (k - 1)
"3

. It is ai~umed thst the random forcing term wz(k - 1) is white* gaussIan

noise with zero mean and covariance Q (k - 1) E(w (k - l)w T (k - 1»).
% "X

B. ANTENNA CONTHOL SYSTEM

Thc antenna control system consists of two channcls-elevation and

azimuth. The elevation channel, which includes the antenna c1yllamics, IS

illustrated schematically in Fig. 2; the azimuth channel has a sinli tar

configuration. In this st.udy, the analysis" is carried through for an

electric drive; a hydraulic drive could ve considered in all analogous

manner.

* The .tatement that a random quantity z i. white implie.'·that £[z(i)zT(j I) = 0 (or i t- j;
un~.orrelated for di{fcr:~nt :\8mple tlme~.

i. t.. Z 1 S
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I: N

~fb J b fd J d

o-t----V/A----l em -~:p~ ~ lh
cPb ¢d

\. \"_-----1 \.~ _.,y"....--------') \.~ ___y---------)

FIELD MOTOR ANTENNA
EXCITATION

FIG. 2 SCHEMATIC DIAGRAM OF ANTENNA CONTROL SYSTEM (Elevation Channel)

It is assumed that the elevation channel is linear (for suitably

small signals) and is described by the following:

1./1 + n/ I uet>

V k/ fg

1. I + R I V - k cP
II " " .. g .."..

T k 1
II ..1; II

.......----.. J.cP" + f cP + C~f.. NcPb) T
II II II

+ cb(rt\
I

JbcPb + fbcPb - cPd) +N2c.(c:/\ - N(b..) 0

- .
+ Cb(Pd - cPb)J lPd + f/Pd /let> (13 )

where

Uq-. control variable

L
f

field inductunce

R
f

field resistance

If field current

k
f

field proportionality constant

V generator voltage
g

1. motor indur.Lullcc
II

R motor rcsist.uncc
"

I 11I0 Lor current.
II

7·7
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k.. llIotor proportionality constant

7' Illotor torque..
J moment of inertia of motor..

damping of antenna dish

I
of ruotor (referred to the moto," sha h.)

I
gear sprllig const.ant

damping of motor

damping of antennn' b<lse

spring constant of antcnna

angle of antenna base or angle of ant.enna's
mechanical axis

moment of inertia of antenna dish

gear ratio

motor allg1e

moruent of inerti,l of ollLenna base

I
angle of antenna dish or Bngle of antenna's
electrical axis

c ..
I ..

nr:/' random distlJrbnnce (noise) due to wind gusts.

It should be noted that this model of the antenna considers the first

bending mode. for large antennas this effect is quite significant.

It has been shown 4 that the power spectral ~ellsity of the wind dis­

turbance n¢ IS approximately equal Lo..
1

The nOIse n,p can be considerc(! as the output of u fil tel' having the

transfer functio/l

and subject.ed to white n\llSC w¢' wherc A~¢fs) '"' 1. This step IS ncces­

sary 100r(l('r to put t.he pn>1.dcm In t.he appropriate form for the relevant

thcol'y. III' the timl~ domain, " 4, and wtj, are related by

;.". 7·8



Tit e <l i ff f' r c n t i a I C _{II n t i () II ~ (J]) a II d (I·t) t' a n 11 e I'" t. i II t. 0 S \. a l<'

variable form by definillg the followill~ \'arial"(~~:

ex? II

as I ..

ex
9

ql..
.

ex 10 q,
m

ex 1 1 q>b

.
ex 12 qJ b

-
¢dex 13

ex 1 4 q>d

ex 1S n 4, (IS)

Upon denoting the nine-dirnclIsiQallal state vector of thc elcvation channel

as

( 16)

ex I 5

the differential cquatioll~ (13) alld (14) cCin Lc rewrittell ('oll('isely as

( I 7 )

7-9



0 0

c f .. c N
"

II

--
J J J

II II II

0 0 0

c N N2c.. + c
II I..

0
J b Jb

0 0 0

c b
0 0

Jd

0 0 0

I '0 0 0
I

f" f'b
0 0

J
b

J b

0 0 I 0

c b f d 1
0

Jd Jd Jd

0 0 0 -°ei·

where

lI
f 0--

I.
f

k 1I
f "-

L I.
" "

0 0

k
"0

.I
Fef;

II

0 0

"- 0 0

0 0

0 0

0 0..

o

o

o

k..
L

II

o

o

o

o

o

o

()

o

()

o

o

o

o

o

o

o

o

o

1 -1
~-..... 'f 0

0

Dei> r;</J
0

0 I

The di~j'lnl ('ompu\('I' simftlatioll of the prolJlcrn lIecpssilal.·s the ('(In\'l~i'­

SiOl1 of the diffprc'ntial c.\II<ll.ioll (17) into an eqlli\'alpnl tli 1'I'I'r"Il!"1'

equation, TJlis can be accomplished by s~JJlin~ Eq, (17) \\'111, all arl,i-

trary initial condition r.(l'):
"

r Ijo( t )
,

t') 1, ..,( t ' ) +/,I'X[1 !"'jo( t,

/" I+ 0 ; l'Xp f~~( I, ( I H)

0, 7.10



Wi til / = kAt and /' " (k - 1),1\/, anl1 wi III lie/> and u',/. assunll"d to lit' I,'on­

st'lllt. OVl'r the tilll(' int.erval [(k - 1)/\1, kAtl, Eq. (IB) 1)('('oll\f'S

(] 9)

where

lJ)

:>:
I " 0

r i • (L".t) i
cP

, ,
1 .

=

=
[

(I) r' .
2: cP

i= 0 (i
(20)

',,--

The azimuth -channel has the same form as the elevation channel, which

i s des c rib c d by the d iffere n t i alequa t ion (1 7 ) , Th eon 1y d iffere n c c b e ­

tween the two channels IS that the moments of inertia of the antenna (in

azimuth) arc functions of t.h(· elevation angles. Since the ('ates of

change for these moments or inertia are slow with respect to't.he control

system time constants, it wi II be assulI\ed t.hat they can be t.reated as

time-varying functions. IIcnce, the azimut.h channel cun 'b-c described by

a differenti.al equation t.hat. is analogous to Eq. (17):

where

F0 ( t ) rot lJ fill 0 + GOW 0 ( 21)

I' (J (2:!)
.1. '.

7·11



IS t.he ni/le-dilll('lIsiollal sLaL{' VI'('t.OI' of t.hl' azimut.h chitlllll·l itnd IS

cnt.il'ely iln,liogous to 1"</, ,'s {kfilll'd by Eqs. (IS) alld (I(i). The millri('('s

Fe(t), DB' itnd 1./1 have tJ .. ~ illl'lItical form of tl .. , ('orrt.'spolldillg mitt./'jt't'S

defined In Eq. (17), the tilll(' dt'I)('lId('II"t~ ill 1"0(1,) being dul.' to tlJl' t.illl/·­

varying mornellts of inertiit.

Th e d i r fer c nt i alequa t i () II (~2 I) can 1> e con ve r l.f~ dill t () an e 'I u i val (' II t

difference equation by assuming that. Fe' in addit.ioll t.o lie and we' 1.-;

constant over the intcl"Val [(k - )1\.1, k6tJ:

r e(k)

(23)

where

cI>e(k - ]) 2·
i "0

. ,
l .

[i i.__ 0 Ffi (k - 1) . (
6

t) i+ IJ f)

- (i + I)! e

[

00

" 2
i '" 0

F~(k - 1) . (6/)i+1J G

(i +-J)~ (J

(24)

and r B(k6t) IS defined as ro(k).,

Henee,the antenna control system (elevation and azimuth challllf.']s)

IS described by

r(k) cI> (k - 1) r(k
r - 1) + 6

r
(k - l)1l(k - I) + rr(k - I)wr(k - 1)

(~5)

where

r(k - 1)
[

r", (k - ])J
re(k 1)

'. 7·12



u(k - 1)"

b. (k - }),

w (k - 1),

[U~(k -I)]
_ IIO (k 1)

[:~
0

-IJ~e(k

["¢(k - 1)1
UJ e(k - 1)J

r, (k - 1) =

In addition, it 1S assumed that w, (k - '1) IS white gaussian n01se

-wi th zero mean and covar1ance Q (k - } ) = e[w (k - 1)wT (k - 1)]' Ther , r

matrices <I>
r'

b., , and r can be computed with an arbitrary degree ofr

accuracy by taking a suitably 1a rge (bu t finite) number of terms 11l the

series expanS10ns of Eqs. (20) and (24) .

C. MEAS~REMENT SYSTEM

The state of the satelli.J.e tracking system, which consists of the

satellite (x.) and the antenna control system (r), may be defined by

the 24-dimensional vector

0: ['] (26)

The measurement system, which inclUdes the monoput"se receiver*, IS

defined by the 15-dlmensional measurement vector

'" The rnonupulse rec~iver and its a9sociat~d demodulating equipmr.nt m~asurefi the elet.. at!on Bnd 81.imuth
comvont:nls of the differr:hCt: oel'Wcen tile anldf: uf the antl"IIf1A'N p.ll!:ctrical axis and t}lt~ 5i1lellil~ un~lc.

It is ossu", ..d that this diffr.rence .is suitolJly ''''011 so thill -thr. operotion of the_m~""_)i'uls.. renivc",
i" lint': A r.
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{3( k )

where

a
21

(k)

¢d(k) - ¢. [a(k),kJ
ed(k) - e. [a(k),k]

P. [a(k),k]

+ v(k) h[a(k),k] t v(k) (27)

.,,',

¢.[a(k),k]

e.• [a (k), k]

p. [a(k),k]

¢d(k)

v(k)

el~vation angle of satellite

azimuth anglc of satellite

range rate of satellite

measuremcnt noise, which is assumed
to be d white gaussian random pro­
cess with zero mean and covariance
R(k) E[v(k)vT(k)].

The expressions ¢ ,e. and p (which are time-varying, nonlinear func-
I • , .s

tions) are derived in Appcndix A and given by Eqs. (A-6), (A-7), and

(A-9), respectively. Figures A-I, A-2, and A-3 in Appcndix A illus­

trate thc geometry of the satcllite tracking problem. It should bc

pointed out that this study considers the relative motion of the antenna

with respect to the satellite as the earth rotates on its aXIs.

Since the measurement equation (27) is-~onlinear, it is necessary,

as before, to perform a linearization." Consider a to be composcd of

some nominal trajectory ao and a perturbatio.n from the nominal ex:

0:

7-14
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Simi larly, Il~t. /1 Ill' gl veil as follows:

!~o + {3 ( :! I) )

Expalluing Eq. ('27) in a Taylor seril's alwlIl. a" alld IIl'gll'ctilig seculld alld

h i gher - 0 r dcrte r ms , t. heli II car per til r bat ion «~'111 a t. i 0 II i s

where

f3( k ) lI[cx:"(k),k)'J(k) + v(k)

h[a o (k), kJ

(0)

lI[aO(k),k]

From Eqs. (26) and (27), it can be demonstrated that

o I I: 0
(6 x (j) l (6 x (j) l (6 x 12)

-------e=s-----------r-r---io--
I· I

.. (6 x 15) I (6 x 6)1(i)x:3)

a~;2-a3-O-o-O-TO----010o-ro--------0

b 1 b2 b3 0 0 0 I 0 0 I 0 0 1 0 0

C I C 2 c 3 d I d2 d3 I O· : 0
I I a O

(k ). k

(31 )
.'

.. '

and d'. arc derived In Appendix i3 and gIven by
I

Eqs. (13-5) throllgh (B-8).

D. ESTIMATOH AND CONTHOI.LEH

The function of the estimator IS to ,generate an optimum estimate

ofthe pre sell t s tat c a fl· a m the mea sur e men t f3. wh i chi s cor r III' l.l~ d by

nOise. This cstimate is thcn employed in thl: eOIlt.roll"r 'to COlnplltc LIII'
o _

opt i 1II11 rn con t r 0 1 w i Lh res pee t. t. 0 t. h c g i vCn per f? I'm a II (' e c r i t (' rio II . 'I'll "

estimation and control e,qui1LioliS arc obt.aillcd In Sees, ILI.and IV,

" e s I' c c t i. v ely,

.;

"
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III ESTIMATION EQUATIONS

In this section the estimation problem IS solved by employing the

extended Kalman filter. This concept is an application to nonlinear

s y s t ems 0 f w0 r k don e b y Ka 1mani n ) i n ear est i mat ion the 0 r y. 5 Th e J e r i ­

vation of the extended (or linearized) Kalman filter is presented 1n

Memorandum 6 6 and hence will not be repeated here. This approach has

been successfully applied at SRI to missile tracking p[·oblems. including

the identification of unknown aerodynamic parameters. 7

From Eqs. (12) and (25). the random disturbance acting upon the

satellite tracking system i's given by the five-dimensional vector

w(k)

which IS white gau-sslan liaise with

[

w (k)]

. W:(kl

'----..
o

Q(k)

The measurement nOIse v(k) has been defined ill. ~~q. (27). The initial

state 0:(0) is a gaussian random variable with

. E[o:(O)]
1\
0:( 0/0) .

E [ { 0: ( 0) - ~ ( 0/0) }{ 0: ( 0) - ~ ( 0/0 ) } T] P(O/O)

Furthermore, it IS assumed t.hat w(k), v(k), and 0:(0) arc uncorrelated.

7·16



The resulting estimation equations can be considered as consisting

of two parts: prediction and correction (or regression).·

A. PREDICTION

Given the estimate of the system state at the k-lth instant
A

[a(k l/k 1»), the predicted system state for the kth instant

"[a(k/k - 1)) is obtained from Egs, (9) and (25):

A ·{~:(k/k-l)
a(k/k - 1) "

dk/k - 1)
A

ct> (k -l)r(k -1/k - 1) + 6. (k -1)Il(k -1)
r r

(32)

with the c a va rl an c e of the error In this pre die L i all g 1 Ve n by

P(k/k - 1)

(33)

where

r(k - 1)

C!>(k - 1)

o

and <I> (k - 1) is obtained from Eqs. (7), (8), and (11) by linearization
r A A

about the estimate a(k -1/k - 1) [or x.(k - l/k.- l));,.i.e.,

c1l (k - 1)
z I + 3[~ (k - l/k - l))6.t. .

It should be noted that w(k - 1)
.•

o i n Eq. (32), sin c e E [w (k -' 1 ») o.

• The following notation will be employed:

~ (iii> ~ r[a(il/l3 (jl. ' .•• f> 01, u(j - Il. '" • u(O»)

P(ilj) ~ E[{a(il- ~(ilj)}{ah)-~(tljl}rll3li),.. , , f3()I, u(J - n. '" . u(O,] .

These expec tal ions are cond i l inned on the prey i ous measurements. lind i nput5.

• ·The nonlinear differelltial equation f"r '. may be integrated loy a ,,,ore accurate method if lIece'.ary,

7·17
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B. CORRECTION

"Th e predie t ion ex ( k / k - 1) 1sthell .. {: 0 n (' c tl' d" 1> y u SIn g t h cae t. u a 1

measurement at the kth instant [(3(k») and t.he predicted measurement for
II

the kth instant [f3(k/k - 1)), which IS obtaincd from Eq. (27):

"f3(k /k - 1)

It should be noted that v(k)

"Idrdk/k - 1), k]

o 1 n Eq. (34), SIn c e E [ v ( k ) ) o.

(34)

Hence, the estimate of the system state at the ktla instant IS gIven

by

1\

a(k/k)
A h
0:. ( k / k - 1) ~ Ii (k ) i/5 ( k) - f3 (k / k

I

1)] (35)

where the w~ighting matrix

W(k) (36 )

arid H(k) IS obtained from Eqs. (30) and ( 31 ) by lineari7.ation about th e

"prediction a(k/k - 1) ; l. e .•..
" CJh •

H(k) H[rt(k/k 1), k) -
----.~

aa
"aU/k-!),k

"The covarIance of the error in tlte estimate a(k/k) IS

P(k/k) [I - IV (k )II( k ) ) P ( k / k .- 1)

(37 )

; .....

The extended Kalman filter [Eqs. (32) through (37)], which IS

depicted in Fig. 3. gives the sulution to the estimatioll problem.

Obviously, this solution call b{' readily implt'mented 011 a di~itid computer.

However, since the overall system IS not lilll'ar, the solutiull i~~

.• From Eqs. (B·S) thrllllf:h (1I·8l, t"~elhH with E'1. (1); f,
it i .. obVlou, that HU) i. uctually ev.lu.t~d 01. the predlct",," ,.(k/k - I).

7·1 8



W (k)

EO (34)

1\
a:(klk-I)

~ (k/k)

u(k)

EO (32)

TA-5578-12

FIG.3 BLOCK DIAGRAM OF THE ESTIMATOR

suboptimal. Intuitively, this approach seems to be quite reasonable,

hut its val i d i t y has not bee n rig 0 r 0 usly est a b Jish cd. Th e ext en t to

which this solution to the estimation problem differs from the optimum

is mainlydependent upon the accuracy of the linearization of Eq. (5),

the differential equation for x.' and of Eq. (27), the measurement

-- e qua t ion. Th ere are In any que s t i OilS per t a i n i n g tot his, sub j e c t t hat

remain to be answered.

It should be noted that in the derivation of the extended Kalman

filter, the nonlinear equations (5) and (27) were used in Egs. (32) and

( 34) too b t a i nth e pre d i c ted s tat can d the pre d i c ted In cas u r e IT! e II t . Th e

linearization of Eqs. (5) and (~7), in order to obtain ~x and N, is only

employed to calculate the tovariance matrices P and the weigllting

matrix IV.
----..----

7-1 9
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IV CONTHOL EQUATIONS

In this section the control problem IS solved by application of

linear optimal control theory. Consider the performance criterion

(38)

This performance criterion corresponds to tracking for the purpose of

gather i ngsa t e 11 i t e po sit i 0 J! d <l t a . Th e cos t ass 0 cia ted with con t I' 0 I

(where y ~ 0) is essential in order to guarant~e that uti> and ue do not

become too large, which, in turn, could C<luse certain state variables of

the antenna control system to exceed tlleir permissibles range of values

(e.g., the motor speed and torque are bounded because of physical con­

siderations). However, the ar.tual performance of the satellite tracking

system is determined by the first two terms in Eq. (38).

4

To use the results of lillear optimal control theory, it IS necessary

for the pe~formance criterion J to be quadratic In the system state a.
However, t.his condition IS not satisfied, since ¢s and 8 s are nonlinear

functions of a (or x.), as shown by Eqs. (A-6) and (1\-7). The criterion

J. can be put into the appropriate form by linearization of ¢ (k) about
A s

the estimate a(k/k) [or ~.(k/k)J. After writing Eqs. (A-6) and (A-7) as

Taylor series expansIons about Q.(k/k) and neglecting second and higher­

order terms,

where

o (k)•

x (k)
t

~ (kik) t i (k). . .

7·20
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i!.(k)

-U
1

-u
2

-U
3

o
o
o

"<Ii (k / k ), .,

"() (k/k)
s

•

~ (k!k),ke

In which the a and b are given by Eqs, (B-S) and (\)-6).

The state of the antenna control system can be defined by the

-. 26-dimensional vector

"cPs

"e
a s

'V

X e

r

'--
which contains a. (with

The dynamics of ?e and

there arc no dynamics

( 41)

" "x lincarized) and IS augmented by qi and e
e s s

r arc given by Eqs. (12 ) and ( 25) , )'espectively;
1\ 1\

associatcd wi th cPs and 0 The re fa re,
s

a (k + 1) ~(k)a(k) + 6(k)u(k) + r(k)w(k)- - (42)

" 1\
• It "hould I,. not~d that because of the nonlineBrity of Eq". (A-6) Bnd (A.7), <P s Bnd Os Bre not

opt,inlaJ estilljal~s ill Ltle usual sellSC.
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where

$(k) [~I:k)
~'.:kJ

[: ~'.:kJ <1> (k) I + 3(~ (k/U]6t
I •

~,:k)]
0

r 0
I

0 r (k)
r

..
Substituting Eq. (39) into Eq. (38) and rewriting J according to

the s'tilndard formulation gives

where

(43)

B(k) B

A(k)

'7 -22



111 which A1(k) is 8 x 8; A2 1S 18 x 18; A
3
(k) is 8 x 18; unt! A(k) is

symmetric and positive semidefinite. After comparing Eq. (38) with

Eq. (43), it is a struightfol'wurd matter to determinc A(k):

I -aT(k)

1 I
I -bT(k)____________1 ...:- _

I
-~(k) -JL(k) I £.(k)£T(k) + JL(k)JLT(k)

I -1 0

0
I

0 0A 3 (k)
. I

0 -1I
I

"- (8 x 4.) I -a (k ) (8 x 8) - b(k) (8 x 4)

0

0 01
0

A2 = .4)

0
0

'--.. 1 -
0

0

(the 5th ~nd 14th elements 6n the diagonal of A2 are equal toone).

The design objective is to find the sequence of_controls

[u(O), u(l), u (A1)]

;.~ . ~ '.

that minimlze J. The control cquatio,ns will be derived by applying

some results obtaincd by Larson; 8 this work is an extension of results

in lineal' optimal control theory.3
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The optimal control u(k) )s given IIy

u(k)
f,

-J((ll)!!:.(k/k)

~here the gaIn matrix K(k) is denoted by

K(k) =

(45)

and ~ satisfies the discrete Riccati equation

_cpT(k)P (k + l)6(k)[B +tJ(k)P (k + l)~(k)]-l~T(k)P (k + l)<ll(k) ,_ c _ - c __ c -

o ~ k < M (46)

For convenience, Pc(k) will be rewritten In a form entirely

analogous to A(k):

..

where Pc(k) is symmetric and positive semidefinite.

Upon performance of the indicated matrix multiplications, the

optimal con trol in Eq. (44) be'~omes

(47 )

where

A
~.(k/k)

A
!.(k/k)

A
e (k/k)•

7-24
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'1'1.(' lliccati !'quatioll (.~(j) call Ill' pal'l it i(lI)('d illio :-;('1',11';111' equatiolls 1'111'

PI' 1'2' alld P J :

t1 (k) + !.lIT (1... )I' (I.: + I) (I' (I.-)
I I I I

-¢i(k)P~u: t !)!\(I.:lill + f\.~·(I.:)P2(1.: t 1)1\,(k) 1- 16 ;(1.')/':1(1.' + 1)(II.U·)

0< k < At (VI)

I' (I.:)
2

A1 (,II) ;

tt
2

+ 41;(k )Jl
2

(k t ]) 4J, (I.-)

-<t>T(k)P (k + ])6 (k)[n + ."?(I.:)!'2(l: + I)t\ (k)]-I,0.T (Jd/ ' ,,(k + 1)(1.1 U.)
r 2 r r r, L r

o :~_ k ..: M (SO) ,

Tta cop I i In a I ,. 0 II t ,. 0 I II i s t." ('II

Eq. (47). Equatiolls (,~7), (50),

A
2

A
3
(k) + <t>iO:)Jl

3
(h + 1)<11,(1.:)

-<Pi(k)P3(k + I )6,(k)(B + 0.~·(k)P2(k + ])!\(k)J'I[\~(I.:)/'2(k + I ) <!\(kl

o < k < At (51)

Equation (50) ('an be' solved for 1'2 illde-pclIdellLly of Eqs. (49) ClllJ

(51). lienee, the dimellsion of the Hiccati equatioll to be srdved has

been reduced from 26 x 26 Lo ]8 x 18. It should be lIoted l.hat Eq. (50)

is the Ricatti equal iOll for the antenlla control system of Eq. (25) with..
the performallce criLcl'ioll

E r; {rT(k)A.,r(k) + ·uT(k)BU(!.:)}]
Lk" 0 "

Once P'2 has been foulId, it IS suusliluted into Eq. (51), which is a

1i II ear (0 qua t ion i II 1\ (0 f d i In 111 I' II S i (l n 8 x ] 8) a II d v l' I' Y () a s y I () S () I v e .

S i tl C e 1'1 doe SilO tell l. (' l' i n tot" l' con t,'oleq II a t i () n (In) 01't. h l' cal cui a t i (l n

o f P 2 a II J P 3 J i tis II (I t. Il e c c s sal' y to sol ve Eq, ( 49 ) . -

Thlls, the corllplltatiunal l'l''1iJil'ements have beell l'f'dllcl'i/ mal'k/.·dly.

Instead of solving Eq. (,16) for P
r

, it will suffice 10 sol\I' Eq. (SO)

for 1'2 alld calculat(' P:l from Eq. (51),

obtailled by substil.uling P., alld Il
j

illlo
A •

and (51), t.ogether wit.h a, give the solulioll to the '0111.,.,,1 problem,
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A. STEADY -STATE APPHOXIMATION

Suppose that the antenna control system of Eq. (25) IS stationary

(i.e., the matrices <fJ ,6 , and r' are constand, which IS equivalent
r r r

to assuming that Fe of Eq. (21) is constant. This assumption is fairly

reasonable over a substantial time interval, SInce the rate of change

of Fe is slow with respect to the control system time constants.

Additionally, it will be assumed that t.he summntion in th(~ performance

criterion J of Eq. (43) is over an infinite time interval (i.e., M = 00).

Th i s ass ump t ion i s qui t ere a son a b I e ,si Jl c e the i n t e r val 0 f tim e duri 11 g

which the antenna is tracking the satellite will be appreciably larger

than the control system time constants. With these two assumptions,

computation of the optimal control u(k) is greatly simplified, as will

be shown below. Formulation of the control problem In thi~ manner will

be referred to as the "steady-state approximation."

TIle Riccati equation (SO) becomes

(52)

The-above is a nonlinear algebraic equation 111 the steady-state matrix

P2' In general, Eq. (52) is very difficult to solve. The most straight-

forward way to obtain'2 is by tl;e iterative solution of Eq. (SO). That.

IS, let P2(k + 1) be some positive definite matrix and then solve

Eq. (SO) -iteratively until it converges to a steady-state solution.

Instead of solving Eq. (51) for P3' consider the following

quantity from the first term of Eq. (47):

(53)

It will be shown that this apprQach simplifies' the computation of the

optimal control u(k); From Eq. (40) it can be seen that

1\

~.(k/k) 0
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"1/) (k I k )•
f,

o (klk)•

"!...(klld o

o

( 5 ,t )

From Eqs. (42) and (54), it follows that

tl>J (k)~(klk) ~(kl k) (55)

In effect, the lineari 7.ation in Eqs. (39) and (40) enables the left-Itnnd

side of Eq. (55) to bc rewrj ltell as

1(k + 11k + 1) ( 56 )

Transposing Eq. "(51) and multiplying by !...(klk) yields

..
AT(k)~(k/k) • cflTpT(k + 1)11> (k)~(klk)

3 - r 3 1--

( 57 )

For COllvenience, definc

Ilcnce, substitution of Eqs. (56) and (58) into Eq. (57) givl's.

7-27

( SI! )



"----..

Froll\ Eqs. (43) 0/1<1 (51), it C::lIl be shown that

o

o
o

(60)

o
II

-0 (k/k),
o

·0

II
(-¢ s

II
and -0 , are the 5th and 14th el~ments, respectively).

From Eqs. (55) and (56), it can be seen that the 18-dimensional

'lector in Eq. (60) is"effectivcly constant. Therefore, the steady-state

solution to Eq. (59) is given by
~--

'7 = [1 - 1l'J -lA; (k )R(k/k)

where

'II = c1>T <t>;P2 6, [8 + 6 Tp 6 ] -16T
/

/ , , 2., ,

(61)

(62)

If the state r(k) were known exactly, WT would correspond to the closed­

loop transition matrix of the antc/loa control ~ystem. For a control law

that is asymptotically stable, IAi(II')I< 1, where the A j (1l') are the

eigenvalues of 'P. With this condition satisfied it can be demonstrated

that the inverse of [1 - 1l'] exists.

From Eqs. (56) and (58), it can be seen that the cxpression In

Eq. (53) is equivalent to 1]; thel"~forc, the optimal control is
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u (k )

(63)

As the succeeding estimates of the'satellite stnte (~ ) aye computed,
II II . •

.cP. and 8. will actually chung-e.' Thus, Eqs. (60) and (61) show that it

IS necessary to update TJ at each discrete time <lnd thell substitute j L

" "into the first term of Eg. (63). Since q\ and 0. (the estimates of the

elevation and azimuth angles of the satellite) change slowly with respect.

to the control system tillle constants, use of the steady-state solution

to compute the optimal control is quite reasonnble. In addition, as

"succesSIve estimates of the <lntenna control system state (,.) are calcu-

lated, they are substitut.ed into the second term of Eg. (63). Equutions
// "V( 52), ( 6 I ), all d (6 3 ), tog e the r IV i t h a, g i vet h e so 111 t ion tothe con t r 0 I

problem under the steady-state apJrroximation.

As a further refinelllC'nt to this approximation, the time-varying

nature of Fe can be token into account as follows: l!pdate Fe period-

ically and recalculate <lJ r , 6 r • and rr of Eg. (25). With these new

nratrices, P2 [the solution to Eg. (52)] and TJ [the solution to Eg. (61)]

are recomputed. Finally, u is obtained from Eg. (63) by suhstituting

these updated ·matrices. lhlls, a nonstationary problem is solved as a

s e r i e s 0 f d iffere nt, s tat ion a r y p" 0 b I ems. I tis not n e c e s s a r y tor e p e;1 t

this pro'cedur~. at every discrete instant k6t, since the rate of change

of Fe is slow with respect to the control system time constants.

The solutions to the control problem call be readily implemented on

a digital computer. Although these solutions are suboptimal, the

approach lIsed seems lJuite l'e~lsollaLle. The validity of these results

remains to be investig'ated.
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V CONCLUSION

The digital computer progralll fol' illlplemf~/ltati(JlI of the opel'atioll of

the (a ppro x i mat ely) 0 p t i III a Ie;,; I. i mat 0 I' a Il d con t I'(l I I e J' i n e () /lj \I /I C t i 0/1 wit h

the satellite tracking system ha.,; been Wl'itlf:1l alld is IIOW fUlictio/lilig

pro per I y . Til e pro g I' a m has be (' II 0 r g a II i 7. cds 0 t hat i t wi I I be sur f j c i ell l J. y

general and flexible enough for t.h(~ proposed appl ications.

Th i s pro g ram 1 s a val u a hie stu J y tool for the i II V est i gat ion 0 l'

several important topics. Primarily, it will provide a way of evaluat-

ing existing tracking techniques; t.e., it will be a yardstick for

comparing system perfol'n1Llllce.

An important question relates to the linearizations employed ill

Se c s . II I and I V in 0 I' d e r to 0 b t a ins 0 lu t i on s tot he est i mat i on and

control problems. Since the sat.ellite tracking problem is nonlinear,

the solutions obtained in this mallner are suboptinl,d. Although this

approach is intuitively reasonalJle, its validity has not been rigorously

established. The extent to which these solut.iolls differ from t.he optimum

will lJe studied bf computer simuJations In conjunction with analytical

investigations.

------
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APPENDiX A

DETEIl~IINATION OF (/)s' Os' p s

The equati.ons of motion of the satellit.e, as gIven by Eqs. (l) or

(3), are expressed In terms of an earth-centered Cartesian coordinate

system. However, the actual operation of the antenna contl'ol system is

in terms of radar coordinates-elevation, azimuth, and range. In fact,

the measurement system [Eq .. (27)] observes the elevation and azimuth com­

ponents of the difference between the :lngle of the antenna's electrical

axis 'and the satellite angle, in addition to the range rate of the

satellite.

SATELLITE

J-----2e

TA- !I!178-13

FIG. A·l GEOMETRY OF THE SATELLITE TRACKING PROBLEM

The geomet.ry of the satellite tracking problem is illustrated in

Fig. A-I. The 1. and 2. axes, which lie III the equatorial plane of the
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(~al'l.ll. alld 1.11(' 3, aXI:>, wllicl, 1:-; ('o;!H·idpllt. wilh lohl: ('.II·t.h':-; 1'0)"1' aXI:-;.

Co 0 III I' 1"1 S(. a II (' it I' L II - C(' II I. c I' p'd Ca I' t. (':-; i a II (' (lO ,. dill a I. l' SYS t. e III . Th e I' 0 sit. i 011 0 f

tile allt.ellna IS gIven by til,· t.hrcI·-·dilll<:nsioll"J vect.or

In the 1 ') 3. cOI)I'dinale 1;)':-;1.('111.t' ... (' ,

Yl H cos yJ cos (Dt + S)
•

Y. Y2 n cos VI s 11\ (Dt + 0)
••

Y3 n• sIn l/J

(A- 1 )

where

R. radius of the earth,

n angular rate of rotation of the earth,

8 an arbitrary angle.

The position of the satellite IS given by the ~hree-dimensional vector

x

III the I ••

Eqs. (l),

by

2. '
Now,

3. cooJ'(finat.e system. x. consists of the x defined ill
•

the vector f"om the alltl'nna to the satellite is dellnl"<!

z
. ,
x - Y (;\ :0

Before proceedillg allY further, it IS necessary to define c(,rtliin

terminology that. will be IIsed:

*1bis study cOJlsiders the Tt'Ja; ive mutiun ur the antenna witll re'pf:ct to tile s.a.t.::J,lite as the· earth
rotates on its axis.
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Azimuth pl~lIe - pl aile tangent to tllc earth at. tile antcnna
site; thi:,; plane is perpelldicuJ1J1' to y

Zero-azimuth
line

Azimuth line

Elevation

angle CPs

Azimuth
angle e

s

- perpcndicular projection onto thc azimuth
plane of a gre~t circle passing through
t.he Nort.h Polc and the ant.clllla·site

- perpcndi cuI HI' proj ccti on of z onto the
2zimuth plune

- the angle hctwecII the azimuth linc and z

- thc angle hetwecn thc zcro-azimuth line
and t.he azimuth liuc.

In the Ie' 2e • 3e coordinatc system, Eq. (A-2) yields

(A-3)

The expressions for the satellite anvles cp and 0 can be obtained fromo s s

E.q. (A-3) by expressing z in terms of thc 1,. 2,. 3, coordinatc system

depicted in Fig. A- 2. The 1 .' 2 • 3 and the 1 , 2 • 3 coordinate systemsr r ret t

are related by the following two rotations (or orthogonal transformations):

..

TA-~578-14

FIG. A~2 RELATION OF THE 11." 21." 3" AND
1" 2, 3, COORDINATE SYSTEMS
VIA "HE TRANSFORMATION R /, I.'
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(J) I'otnt-ion a"olll lhl':\ a>.is "y lhl~ angle U, + 0; en I'olation a"olll
c

It can Itt: Set~11 that lhe ilX) s
r

i s pc rpl' n die II I a I' lo I. h l' U z i III U I Ii p I a Ill' , WIi i I c l h c' 2, a II d 3 r a xes I j c~ i II

the azillluth planc alld thc~:\ axis is (;oillcidcllt. wit.h the ZCI·o-a7.imllth,
) i n e . Th ere S II] 1. i II g (l rt hog (l n a I l. (';tll S f () 1'111 U t. i 0 II C a II " l.: I' cpr esc II led It y

5111

cos ~]
+ 0)

+ 0)

(Ot

(fit

o

SJII

COS

+ 0)

+ 0)
VJ] [ ('~so -SIn

If;

[

COS If cos (Dt + (:»

-sin (!It + 0)

-sin t/J cos (D.t + 0)

cos t/J sin (0.( + 0)

cos (fit + 0)

-sill t/J sin (fit + 0)

S>~~]
cos 't'

(A- 4)

Th us> 1 nth e 1 r I
')
.. T > 3 coonJi lIa lc sy s tcm I

r

Zr H zric t
(A-S)

Inspection of Fig. A-3 ellables olle to readily dcterlllillc, '1\ and 0.> which

are given by !

¢. sill- 1 [1':,'1] ,..
--- '--.

[~~ ,

z3

,,;/]0 cos- 1
•

+

(A-6)

(A-7)

where

Iz I
T I I z Ic.

Ly sub-

al'c knowlI time-varying

t e 1'111 s 0 f the x. and Y i
c t

arc contained ill the stutt::lhc x.
I

t

alld lite Yi
t

Fi n 111 1Y I eJ! a IIdOc U 11 bet: X pressedill• •
stitutillg from I·,qs. (A-S) alld (A-3).

vector a of Eq. (26) [see Eqs. (2»).

* It should Lc noted that thp. n'agnitude uf • veclur i. i/lJcI.endelll of ll,e C(JOI'll'ill"t~ sy.lem.
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2 r

Z,
r

...................................

..............
.......

..............
..............

Z ~,~ ! ZEHO-AZIMUTH

JtC-__---l~¢_S_,-- i C,L~ NE 3,

e I / 3r
S I I

....... I /
....... I I

-------------f~:::-·:J./ .
AZIMUTH LINE

TA-557B-15

FIG. A·3 DETERMINATION OF ¢s AND Os

functions fsee Eqs. (A-I)), lIence, the satellite elevation and azimuth

angles are1time-varying, nonlinear functions-¢ [a(k},k) anti e [a(k),kJ.
• $..

Th e range p., the dis t an c e [ r 0 rn tile ant en n a to the sat e 11 i t e , i s

given by

From Eqs. (A-8) and (A-3),

p.
..

(A- 8}

(A- 9)

The xi and x·
i

are contained in a c;>f Eq. (26) [see Eqs. (2}), and the
~ e

Y i and Yi are known time-varying [unctions [the Y
i

ar<~ readily obtailled
~ e' r

from Eqs. (A-O)".· Thus, the satellite range rate is a time-varyillg, lIon-

1in ear fun c t ion -,0 [a (k ) ., k1.
I .'
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AJ>l'tNIJ/X B

CALCULATION OF TilE a , b., C., d
l , I ,

The matrices 1/(k) of Eg. (3J) ,111<1 !!.(k) and !!.(k) oJ Eqs. (39) con-

tain the partial derivatives of ¢., 0.> and fi. wit.h respect to the c1ClIlcnts

of 0: [or xe~see Eqs. (2) and (4)]; i. e.,

O¢. O¢.
-a. -- '" --

I ox. oa.
I I
~

ou 00- . •-b. " -I ox. dlX.
I ,

e

O· O·p. p.
c i - -

dx. 00:... , ,
e

"'--.
O· o'p. p.

d i =
Ox. 00: 3 +&

I e

for i '" 1 , 2. 3.

(B-1)

. 03- 2)

(B- 3)

(B- 4)

"

.".': ..'

Applying the chain rule for differentiation to Eqs. (A-5), (1\-6).

'and (A-7), one can express die terms in Eqs. 03-]) and (B-2) in the

compact form:

- a l olP./az
l

-a 2
..,.. It T o<'PJoz2 <B-5)r/e ,

.' -a 3 O¢ ,1oz 3
r

.-
. '.
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wht· re

)~( 2
? •

'ell) .. 2 r
+ Z j,. r

~)z 1 I;, I2r

dq) . -zl Z 2
• r

OZ2 (z 2 + z~.)~lzrI2r 2r

"2</) - Z 1 Z3

• r r
02 3

0~ r z;JYzlzrl2r +

oD /"0z
• 1

o

The above resulls make use of the fact that

.Oz

L
for i

·ox.
J ~ for I j
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and that tile elcrnc/lt 111 the ·i ll, row and jlh column 01 H~/r corresprlllt.l s

to. Oz. jez.. Fi nu 1] y, t.he (J,.j, j7)z. and 7)0 joz. call be exprcsscJ ill
J r I r S J r • J r

terms of the xi and Yi by substitution from Eqs. (1\-5) and (1\-3).
r ~

From Eg. (1\-·11), it IS a struightfol'lvard mattcr to show that the

terms ill Eqs. (B-3) and (B-1) arc given by

ei• - Yi.) 2
2

(x I r - YI.)It i

[ 3 -Yi.r] 3/2
2: x.

j=l ( J.

d.
I

L
3

2:
. = 1.

·7 -4 0

(B- 8)
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APPENDIX A
A SU~WARY OF SOME RESULTS FROM

LINEAR OPTIMAL ESTIMATION THEORY

The optimal estimation algorithm has been worked out,

in par~icular, ~or systems whose dynamics may be expressed

by a set of linear difference equations of the following
form: [1-5]

,where

x-k = ¢(k,k-l) xk - l + ~k-l (A-I)

.'
= n-dimensional state v~ctor at the discrete time

instant t = t k

..
w = n-dimensional random noise vector at t = t

k-k

~(k,k-l) = nxn state transition matrix

Usually, most of the states of the system are not

directly measurable. The set of:physical entities that

are directly measurable, ~onstitute the so called measure­

ment vector {3. In some particular cases, several compon-'

ents of ~ may be identical with the corresponding state

variables.

It will be assumed that the measurement vector may

be expres~ed as a linear function of the state vector:

B - H (k) x -{, v
-k --k-k

A-I

(A-2)



where

~k = m-dimensional measurement vector at t = t k

v = m-dimensional measurement noise vector at t = t.
~ K

H(k) = mxn measurement matrix at t = t k

It will be further assumed that both wk and ~k are

uncorrelated white noise sequenc~s arid:

for all k (A-3)

for all k (A- 5)

..'

where ok' is the Kronecker delta
-----)

Qk and Rk are non-negative definite (nxn) and (mxm)

matrices respectively.

The initial state ~(o) is assumed to be a random

variable with the following statistics:

,
. E [~(o)] = 0

A-2

(A- 6)

(A-6)



where

Po is an nxn matrix.

Further, it is assumed that ~(o) and ~k and ~k are uncor­
related for all k.

The optimal estimation problem consists of establish-
A

ing an estimate of xkat ! = t k , denoted by xk ' based
on the previous estimate ~k-l and on the present measure­

ment ~k' so that the error is minimized, i.e.,

Minimize J = E[(xk (A-8)

;

The optimal solution to this problem is the follow-
. [2-5]lng:

..
The optimal state estimate at t = t k is given by:

A A

Xk = <1J(k,k-l) x + Kk [£~.k - H(k) <p(k,k-l)xk _l ] (A-g)-k-l

where Kk is the so called weighting or gain matrix (of

dimension nxm in this case), and is given by the relation:

Kk = Pk' HT(k) [H(k) P' HT(k) + R ] - 1 (A- I 0)k - k

where Pk is the covariance matrix (nxn) at time t = t k :

A-3



and

The covariance matrix, Pk satisfies .the matrix Riccati

equation:

(A-Il)

(A-I2)

(A-13)

It can be shown[4] , that Pk reduces to:

,--

- .

(A-I4)

.. ':

Equations (A-g), (A-IO), (A-12) and (A-14) constitute the

Kalman filter for the system described by the mathematical
model of Eqs. (A-I) and (A-2).

L. Meier proposed an extension of Kalman's method
t 1 " "1""·· d [1 6]o non lnear system, uSIng a Inearlzatlon proce ure ' .
This so-called "Extended Kalman Filter" will be described

next. The system under consideration is described now, by
the following set of nonlinear difference equations:

A-4

..



x-k+l . (A-14)

~k is a r-dimensional control vector. Other variables are
the same as in Eq. (A-I). The measurement equation is also
described by the following nonlinear set of equations:

Equations (A-14) and (A-IS) are linearized using a
A ,.

first order approximation around ~k and xk+ l respectively.

A A

'~k+l = f.(~k'Uk,k) + fx(~k~k,k) (~k - ~k) + ~k

A- 5

(A-IS)

(A-16) .'



Introd;ucing

A A

£(~k' ~k,k) = Xk+l - ~k+l

A

X = x - x-k -k -k

Equation (A-16) now becomes:

A

Xk+l =fx(xk , ~k' k) xk + ~k

(A - 20)

(A- 21)

(A- 22)

As one may see, Eq. (A-22) is of the same form as Eq. (A-I),
where the matrix f x has replaced the state transition matrix

~(k+l, k), and xk+1' ~k have replaced xk+l ' xk respectively.

In a similar manner one may introduce:

-"·"·§.k+l = ~k+l - h(xk +l , k+l)

and the measurement equation (A-17) will take the form:

(A - 33)

B-k+l
A

= hxCxk+l , k+l) ~k+l + ~k+l (A-24) .

This is a linear set of equations completely analogous to

Eq. (A-2), w~ere' the matrix hx replaces matrix H(k+l), and

the vectors 8k+ l , ~k+l replace Bk+1 and .!k+l respectively.

A-6



The Extended Kalman Filter may now be formulated as

follows, based on Eqs. (A-9), (A-IO), (A-12), (A-14), (A-22),
(A-24) :

" " "
xk = f(~k_l'~k_l,k-l) + Kk[~k - h (xk ' k)]

"
Pk = Pk - Kk hX(~k,k) Pk

A-7

(A - 25)

(A-26)

(A-27)

(A-28)
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APPENDIX B
A SUMMARY OF· PERTINENT RESULTS FROM

LINEAR OPTIMAL CONTROL THEORY

The optimal control techniques applied in the programs

ORBRAC, ATRK30 and RATS are described in detail in previous
publications[1,2].

The performance criterion adopted in these programs

is the minimization of the pointing error, or rather the

sum of squares of the pointing errors at the sampling times.

In addition, a weighted energy term (square of the control

signal) is added to the perfor~ance index at each sampling

time. Basically one has a Minimum-Error, Minimum-Energy

optimal control problem. The performance index is expressed

as:

where

Minimize J = if I[XCil -X t Ci l]2+[Y{il

• WXUX
2

Ci l + wyuy2(ill (B-1)

XCi)
-'

= antenna X angle at the sampling time t = t .•
1

XtCi) = the true, or predicted X angle

Yei) = antenna Y angle

Yt(i) = the true; or predicted Y angle

wx.. · = weighting factor for thE: X-channel
.-4;:-

B-1
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wy = weighting factor for the Y-channel

Ux = control signal on the X-channel

uY - control signal on the Y-channel

The state equations are linearized, so one has the

classical problem of optimal control of a Ijnear system

with a quadratic performance criterion. The solution to

this type of problem is well known and was documented in

numerous publications. A good tutorial exposition on the
subject may be found in References [3,4], to mention only

a,few.

After applying the basic Maximum Principle techniques,

the optimal control vector is given by:

where--

u(i) = -K(i) x (iIi)

..
(B- 2)

"x(i/i) = estimated state vector at t = t. based on
1

previous estimates up to t = ti-(of Appendix A);

Kei) = gain matrix at t = t .•
1

The gain matrix is a function of the Pc matrix which

is a solution of a matrix Riccati equation. The details

concerning the solution of the Riccati equation in these

programs are found in References [1,2]

B-2
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· APPENDIX C
RATS Program Documentation

INPUT (Program RATS)

Input to program RATS is supplied by six NAMELIST
data statements in the followini sequence:

/PLOTS! NOPTS
/TYMSTA/ DTC, DT, PSI, DELTA, ST
/STATEI/ XO, AE, RP

/NOISCV/ R, QV
/STCOV/ PK
/SCALE/ VM, EM
/DY1\TMIC/ FP, DPHI

A full description of the NAMELISTs follows .

.'

C-l



NAMELIST ITEM DESCRIPTION

/PLOTS/ .

/TYMSTA/

NOTPS

DrC

Number of time points to be,

Time-interval in seconds fa,
gration of satellite motion
tions occurring at times be~

two successive values of DTC
are obtained by straight lin
polation.

DT

PSI

Data sampling interval in se l ,

Latitude of tracking antenna,
degrees.

DELTA Right ascension of antenna at
start of tracking interval in,
degrees.

of
,

~~'~b~:O
e-l~('a ~i.on· '

,
j(-fk.(M

True values of initial ~~±m~-
channel state.

End time of tracking interval
seconds.

Estimated initial values of
XO (1-6)

X-Coordinate of Satellite*
Y~Co~rdinate of Satellite
Z-Coordinate of Satellite·X~Coordinate of Satellite
·Y-Coordinate of Satellite·Z-Coordinate of Satellite

Estimated initial values of
~~n channel state.

E ~d ... 1 1,'stlmate lnltla va ues
~n~~ channel state.

X'>o,fJ,/p;o
True values of initial
channel state.

ST

XO(I)
XO(2)
XO(3)
XO(4)
XO(S)
XO(6)..

AE(l-6)

AE(7-l2)

AE(l3-18)
/

/

RP(l-6)

RP(7-l2)

".

/STATEI/

*Values at start of tracking interval, t=O.

C-2



NAMELIST

/NOISCV/

/STCOV/

/SCALE/

,/_ /DYNAMIC/

'ITEM

R (11,11)

QV (5,5)

PK (18,18)

VM (11)

EM

FP (12,12)

DPHI (12)

C·3

DESCRIPTION

Covariance matrix of system
Imeasurement noise, E[v,viJ..

Covariance of system dis­
turbance vector, E[w,wT).

Covariance of initial sys­
tem estimate E[a,d t ) ie

tE[AE,AE ].

Weighting vector for mea­
.surement noise.

Scaling factor f0~ R, QV,
VM Nominal value=l.

Matrix representation of
system dynamic function.

Coefficients of control input.

.1: '.



Name

RATS

BLOCKDATA

I

J TRAK2

/
;

/TRAK3.

/
I

)TZERO

AGBT

PFEEH

RATS PROGRAM

SUBROUTINES DESCRIPTION

Function

Read plot control.

Preset common block variables.
.,/ /

Rea4/items from namelists: TYMSTA, STATEI,
v v .....----

NOISCV, STCOV, and SCALE. Write initial
conditions and system constarits.

Read items from namelist DYNMIC. Compute

<Po' be' r e, Eq. (24)* , r, Eq; (33)

Calculate control as in Eq.*(63). Form
plot if all points finished. Calculate
"-
a (k/k~l) as in' Eq. * (32) .

"-

Calculate the coefficient of y(k/k) in
Eq. (63); and write as feedback coefficients.

Calculate ¢s' es Eq.(41)

Calculate S (k) Eq. (27)

Calculate CPs' as (Eq.(41)

0.,.
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Name

PXAGBH

PKKM

HMAT

WATE

POSITN

PCNTRL

ECNTRL

BARN

DNVERT

ITRVRS

SUBROUTINES DESCRIPTION (cont.)

Function

Calculate predicted satellite data,

using Eq.(32). Find ~ , e and calculate
ASS

f3(k/k-l) Eq.(34).

Calculate P(k/k-1) Eq. (33)

Calculate H(k) Eq. (31).

(Note: For system in actual program the

form of H used may differ from Eq. (31).)

Calculate W(k), Eq. (36).

Integrate equations of motion to update

satellite position-velocity .

..
Find steady state solution of the Riccati

-<:tquation in Eq. (52).

Calculate coefficjent of x(k/k) in Eq. (61).

Random number function.

Matrix inversion routine.

Iterative matrix invertion.

C-s



Description

errors

Estimated system state #35

See #52

See 1#59, #62

RATS PROGRAM

Units

Program Variables

Deg.

Report

T
<t> P2fi

[B+~TpA]~T

'"a(k/k)

Variable

A2

AE

Program

AS

ANGOUT

·1
1

1

1

1

1

1

1

1

1-----------------r------...,-------.-----------
1

1

1

'~I

1

1

1

1

1

1

1

1

1

1

1Output arrary for angles and L.
,I
, 1
, ;
,.,1

AP

BETA

BETAH

. i
' CNT

i

CP

C2

x(k/k-l)

f3(R)

BCk/k-l)

cosljJ

cos (nt+ 6)

: :

Predicted satellite state #32

Measurement vector #27

Predicted measurement vector ~:~

Horizontal counter for plot ro~'

cos of station latitude (App

cos of station right ascF

CAppen~ix A)"

DELTA Radians
station

C-6



DescriptionUnitsReport

Variable
',r----.,...'-------'------"T-------.,~---------------------

rprogram
",------+----------4------

See #62, 63

:f DLP

1

~ (k-l)r Antenna system control variable

constraints #24, #32

DPHI

~
.\

Control const~aints for continuous
case #17

~t SEC Sampling interval

~ DYC
J

"~

Col. 1 of
[I_l/J]-lA

3
T (k)

Col. 1 of
[I -l/J] - 1i

3
-T (~)

SEC Time interval over which satellit~

positiorrvelocity is to be found

by linear interpolation

Corresponds to constant portion,

for Y-channel, of n #61, multipli~

"cati on by <p occurs in TRAK2

Corresp~nds to constant portion,

for X-channel, of n #61.

:l ETN
,

In ro'utine TRAK2; P2¢YY-ry #63,
for Y angle channel.

"

,/

'"""J

'~7 eTNl In routine TRAK2; P2tPXX- rx, #63,

for X angle .channel.

, ~p F
<P

;
.x
,~.

State 'transition matrix for con­

tinuous antenna system, #17

_~ ___l. _.l__as_s_u_m_e_d_i_d_e_n__ti_c_a_l_f_o_r_e_a_C_h__C_h_a_n_r,_l_e_l_.__", .,'.

C-7



---:-----------------l-r----.-.---.--------------------·
Variable

Program Report Units Description
---------1f-----------I~-------I---------------.---__,

\ :

G

GNv1P

GAMSUB

GS

H

HE

PC

r (k-l)

r r(k-l)

r (k - 1) Q( k - 1) r T (k - 1)

r.Q

H(k)

SEC

Complete constraint matrix for
system, ·#33

Antenna system noise constraints
#19, #25

Contribution to r(k/k-l) from
system noise covariance, Q, #33

Dot product r.Q#33
!

Matrix of partials of S with re-
"spect to X #31, #34

Integration step size for orbital

motion

Program branch control must be pres~

to 0 for first pass

Unit number for input normally = 5

Unit number for output normally = 6

Rotational velocity of the earth

Temporary storage in calculations
¢> from F #19

r r

Steady state~olution to Riccati
e qua t ion # 52 .

..,--_-'.:;...._.,--l- -..L --'--'- _
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rogram
Variable

Report Units Description
-----t-------.---+----------+-----,.---------------------.....' -

Temporary storage for Pz
I Rad True elevation angle (in this system

Y angle) #27

IERR ; Deg.

IH ¢s (k) Rad

"
IP ¢s(k/k-l) Rad

P(k,k)

Error in q>(Y) for plot r~utine

Estimated elevation angle'· (Y)

I

Predicted elevation angle (Y) #34

".:",:: .......
.. '

:;.....: .

Covariance matrix of, error in

estimate #37

\1

;.'

P(k/k-l)

'q> (k-l)
l'

u

~ (k -1)

-~.

Radians

C-9

Covariance matrix of error In

prediction

.
Antenna system state discrete

transition matrix. Assumed

constant and identical for both

channels, #19

Latitude of station

Control variable for Y-angle chann'el

Control variable for X-angle channel

Linearized state transition matrix,

#33

, Temporary storage no longer used



Program

QV

R

RCP

RE

RP

RPI

SA

Variable

Report

Q(k)

R(k)

re

r(k-l)

r (k)

Units

Meters

Meters

Description

Covariance of system noise.
See page 16 and #33.

Covariance of measurement noise

Sec page 14 and #35, 37.

re*cosljJ

Radius of the earth

True antenna system state #25

True antenna system state #25

elY #31
- a-a--:-

1

SB ax
- aa.

1

# 31

! '

I,

!

I'

S1

SP

ST

T

THE

SIN (Qt+o)

SINljJ

SEC

SIN of station right ascension
.(Appendix A)

SIN of station latitude

Appendix A)

Time_after epoch of last desired

data poin~

Temporary variable used in cal­
culation X,Y angles

True azimuth angle eX angle) #27

_-------..L.-----------'----------.----------------__
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Report

Variable'1--------.-----------l
Program

~.r'

i

I THEERP

Units

Deg.

Description

Error in e (X) for plot routine

j

I THEH

J THEPJ,
"

TIME
;

j rH'1E
'~
,

UC
"1

~

,
I UCN

! UCNI

:, UE

liM

~ IVTK

x

r

ue

V(k'
, )

W(k)

W(k)

x

SEC

SEC

Meters

Estimated azimuth angle (X-angle):

Predicted azimuth angle (X angle)#34

Current sample time

Interpolation time

Variance of control variable

page 22, #43

Y angle channel #63

X angle channel #63

Gravitational conitant

Measurement noise, #27

Scale factor for measurement noise

I before use V(k) = V(k)*VIvl

Weight matrix #36

Actual position vector of

satellite (Appendix A)

Meters Satellite state at end of

~ -1-- , -<-__- ~nterpOlation ~_e_l_.l_.O_d _

, "

~jrr .
.~ ..1
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I
I
I

, j
,

Program

xo

y

Z

ZA

ZAP

ZE

ZP

ZR

ZRP

Variable

y

z

Report Uni ts

Meters

Meters

Meters

Meters

Meters

Meters

10 Meters

Meters

Meters

Description

Satellite state at beginning

of interpolation period

Position vector of station

(Appendix A)

x-y

True range of satellite

Predicted range of satellite

Difference between estimated

satellite position and station

position vector

Topocentric coordinates of true

position of satellite

Topocentric coordinates of true

position of satellite

Topocentric coordinates of

predicted position of satellite

'·1
I, : C---:-L- .L-- --L _,
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APPENDIX D

DIRECTION ANGLES

The direction angles used in this study will be

defined with respect to the coordinates system in

figure D.l. The Elevation (EL) and Azimuth (AZ) angles

as well as the X, Y anglei for a 30 ft. antenna, are

defined in figure D.l. (a.). The same x, Y convention is

also used in the 40 ft. antenna.

If the satellite coordinates are (x~, y~, z~), i

the angles are:

AZ -1= tg

..

CD .1)

where

EL -1= tg (D.2)

.;

..

-1= tg (:: ).

D-I

(D. 3) .



The relationships between them are, [1]:

sin Y30 = cos EL cos AZ

(D.4)

(D.S)

= cot EL sin AZ (D.6)

sin EL = cos Y30 cos X30 (D.7)

tgAZ = cot Y30 sin X30 (D.8)

The X, Y angles for

defined in figure D.I (b).
lationships are:

the 8S ft. antenna are

The corresponding re-

-1= tg (D.9)

D-2
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sin Y85 = cos EL sin AZ (D. 11)

sin EL

tg AZ

REFERENCES

=-cot EL cos AZ

= ·cos Y85 cos XS5

- -tg Y85 / sin X85

. (D.12)

(D.13)

(D.14)
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