9 research outputs found

    Nuclear recollisions in laser-assisted α\alpha decay

    Full text link
    Laser-induced nuclear recollisions following α\alpha decay in the presence of an intense laser field are investigated theoretically. We show that while an intense optical laser does not influence notably the tunneling rate in α\alpha decay, it can completely change the α\alpha particle spectrum. For intensities of 1022102310^{22}-10^{23} W/cm2^{2}, the field is strong enough to induce recollisions between the emitted α\alpha particle and the daughter nucleus. The energy gained by the α\alpha particle in the field can reach 20 MeV and suffice to trigger several types of nuclear reactions on a femtosecond time scale. Similar conclusions can be drawn about laser-induced recollisions after proton emission. Prospects for the experimental realization of laser-induced nuclear recollisions are discussed.Comment: 5 pages, 3 figures; v2 extended the motivation and discussion about experimental feasibility; results unchange

    Evaluation of Recombinant Herpes Zoster Vaccine for Primary Immunization of Varicella-seronegative Transplant Recipients.

    Get PDF
    BACKGROUND Immunization of VZV-seronegative solid organ transplant (SOT) patients using the live-attenuated varicella vaccine is generally contraindicated, leaving no widely applicable immunization option. The recombinant subunit herpes zoster vaccine (RZV) is indicated for VZV seropositive persons to prevent shingles but could potentially also protect VZV-seronegative persons against varicella. We performed a safety and immunogenicity evaluation of RZV in VZV-seronegative SOT recipients as an option for protection. METHODS VZV-seronegative adult SOT patients with no history of varicella/shingles vaccine or disease were given 2 doses of RZV vaccine 2-6 months apart. Blood was drawn prevaccination (V1), prior to the second dose (V2) and 4 weeks after second dose (V3). Humoral (anti-gE) and cell-mediated immunity was evaluated, with polyfunctional cells defined as cells producing ≥2 cytokines. RESULTS Among 31 eligible VZV-seronegative SOT patients screened, 23 were enrolled. Median age was 38 years and median time since transplant procedure was 38 years. The most frequent transplant types were liver (35%) and lung (30%). Median anti-gE levels significantly increased from V1 to V3 (p=0001) and V2 to V3 (p<0001), even though only 55% had a positive seroresponse. Median polyfunctional CD4 T-cells counts increased from V1 to V2 (54/10 vs 104/10 cells; p=0041), and from V2 to V3 (380/10; p=0002). Most adverse events were mild with no rejection episodes. CONCLUSION RZV was safe and elicited significant humoral and cellular responses in VZV-seronegative SOT patients, and has the potential to be considered as a preventive strategy against primary varicella

    Lasers and Coherent Light Sources

    No full text
    This chapter describes lasers and other sources of coherent light that operate in a wide wavelength range. First, the general principles for the generation of coherent continuous-wave and pulsed radiation are treated including the interaction of radiation with matter, the properties of optical resonators and their modes as well as such processes as Q-switching and mode-locking. The general introduction is followed by sections on numerous types of lasers, the emphasis being on todayʼs most important sources of coherent light, in particular on solid-state lasers and several types of gas lasers. An important part of the chapter is devoted to the generation of coherent radiation by nonlinear processes with optical parametric oscillators, difference- and sum-frequency generation, and high-order harmonics. Radiation in the extended ultraviolet (EUV) and x-ray ranges can be generated by free electron lasers (FEL) and advanced x-ray sources. Ultrahigh light intensities up to 1021 W/cm2 open the door to studies of relativistic laser–matter interaction and laser particle acceleration. The chapter closes with a section on laser stabilization

    Nonlinear Optics

    No full text
    This chapter provides a brief introduction into the basic nonlinear-optical phenomena and discusses some of the most significant recent advances and breakthroughs in nonlinear optics, as well as novel applications of nonlinear-optical processes and devices. Nonlinear optics is the area of optics that studies the interaction of light with matter in the regime where the response of the material system to the applied electromagnetic field is nonlinear in the amplitude of this field. At low light intensities, typical of non-laser sources, the properties of materials remain independent of the intensity of illumination. The superposition principle holds true in this regime, and light waves can pass through materials or be reflected from boundaries and interfaces without interacting with each other. Laser sources, on the other hand, can provide sufficiently high light intensities to modify the optical properties of materials. Light waves can then interact with each other, exchanging momentum and energy, and the superposition principle is no longer valid. This interaction of light waves can result in the generation of optical fields at new frequencies, including optical harmonics of incident radiation or sum- or difference-frequency signals

    Nonlinear Optics

    No full text

    Lasers and Coherent Light Sources

    No full text

    Assessing written work by determining competence to achieve the module-specific learning outcomes.

    No full text
    This chapter describes lasers and other sources of coherent light that operate in a wide wavelength range. First, the general principles for the generation of coherent continuous-wave and pulsed radiation are treated including the interaction of radiation with matter, the properties of optical resonators and their modes as well as such processes as Q-switching and mode-locking. The general introduction is followed by sections on numerous types of lasers, the emphasis being on todayʼs most important sources of coherent light, in particular on solid-state lasers and several types of gas lasers. An important part of the chapter is devoted to the generation of coherent radiation by nonlinear processes with optical parametric oscillators, difference- and sum-frequency generation, and high-order harmonics. Radiation in the extended ultraviolet (EUV) and x-ray ranges can be generated by free electron lasers (FEL) and advanced x-ray sources. Ultrahigh light intensities up to 1021 W/cm2 open the door to studies of relativistic laser–matter interaction and laser particle acceleration. The chapter closes with a section on laser stabilization
    corecore