240 research outputs found

    Software tools zum interoperablen Austausch und zur visualisierung von Geodatensätzen über das Internet

    Get PDF
    Monitoring of the Earth and its atmosphere is essential for assessing the state of the environment and for measuring success of political measures to curb air pollution or mitigate climate change. The modern concept of monitoring the chemical composition of the atmosphere goes beyond the classical set-up of individual observational sites and involves a variety of measurement platforms (ground-based, ships, aircraft, satellites) and principles (chemical analysis, active and passive remote sensing, etc.). Numerical models play an increasingly important role for the interpretation of observations and their integration into a consistent global picture ..

    Evidence of fNIRS-based prefrontal cortex hypoactivity in obesity and binge-eating disorder

    Get PDF
    Obesity (OB) and associated binge-eating disorder (BED) show increased impulsivity and emotional dysregulation. Albeit well-established in neuropsychiatric research, functional near-infrared spectroscopy (fNIRS) has rarely been used to study OB and BED. Here, we investigated fNIRS-based food-specific brain signalling, its association with impulsivity and emotional dysregulation, and the temporal variability in individuals with OB with and without BED compared to an age- and sex-stratified normal weight (NW) group. Prefrontal cortex (PFC) responses were recorded in individuals with OB (n = 15), OB + BED (n = 13), and NW (n = 12) in a passive viewing and a response inhibition task. Impulsivity and emotional dysregulation were self-reported; anthropometrics were objectively measured. The OB and NW groups were measured twice 7 days apart. Relative to the NW group, the OB and OB + BED groups showed PFC hyporesponsivity across tasks, whereas there were few significant differences between the OB and OB + BED groups. Greater levels of impulsivity were significantly associated with stronger PFC responses, while more emotional dysregulation was significantly associated with lower PFC responses. Temporal differences were found in the left orbitofrontal cortex responses, yet in opposite directions in the OB and NW groups. This study demonstrated diminished fNIRS-based PFC responses across OB phenotypes relative to a NW group. The association between impulsivity, emotional dysregulation, and PFC hypoactivity supports the assumption that BED constitutes a specific OB phenotype

    Modulating medial prefrontal cortex activity using real-time fMRI neurofeedback: Effects on reality monitoring performance and associated functional connectivity

    Get PDF
    Neuroimaging studies have found ‘reality monitoring’, our ability to distinguish internally generated experiences from those derived from the external world, to be associated with activity in the medial prefrontal cortex (mPFC) of the brain. Here we probe the functional underpinning of this ability using real-time fMRI neurofeedback to investigate the involvement of mPFC in recollection of the source of self-generated information. Thirty-nine healthy individuals underwent neurofeedback training in a between groups study receiving either Active feedback derived from the paracingulate region of the mPFC (21 subjects) or Sham feedback based on a similar level of randomised signal (18 subjects). Compared to those in the Sham group, participants receiving Active signal showed increased mPFC activity over the course of three real-time neurofeedback training runs undertaken in a single scanning session. Analysis of resting state functional connectivity associated with changes in reality monitoring accuracy following Active neurofeedback revealed increased connectivity between dorsolateral frontal regions of the fronto-parietal network (FPN) and the mPFC region of the default mode network (DMN), together with reduced connectivity within ventral regions of the FPN itself. However, only a trend effect was observed in the interaction of the recollection of the source of Imagined information compared with recognition memory between participants receiving Active and Sham neurofeedback, pre- and post- scanning. As such, these findings demonstrate that neurofeedback can be used to modulate mPFC activity and increase cooperation between the FPN and DMN, but the effects on reality monitoring performance are less clear

    Targeting the affective brain-a randomized controlled trial of real-time fMRI neurofeedback in patients with depression.

    Get PDF
    open access articleFunctional magnetic resonance imaging neurofeedback (fMRI-NF) training of areas involved in emotion processing can reduce depressive symptoms by over 40% on the Hamilton Depression Rating Scale (HDRS). However, it remains unclear if this efficacy is specific to feedback from emotion-regulating regions. We tested in a single-blind, randomized, controlled trial if upregulation of emotion areas (NFE) yields superior efficacy compared to upregulation of a control region activated by visual scenes (NFS). Forty-three moderately to severely depressed medicated patients were randomly assigned to five sessions augmentation treatment of either NFE or NFS training. At primary outcome (week 12) no significant group mean HDRS difference was found (B = −0.415 [95% CI −4.847 to 4.016], p = 0.848) for the 32 completers (16 per group). However, across groups depressive symptoms decreased by 43%, and 38% of patients remitted. These improvements lasted until follow-up (week 18). Both groups upregulated target regions to a similar extent. Further, clinical improvement was correlated with an increase in self-efficacy scores. However, the interpretation of clinical improvements remains limited due to lack of a sham-control group. We thus surveyed effects reported for accepted augmentation therapies in depression. Data indicated that our findings exceed expected regression to the mean and placebo effects that have been reported for drug trials and other sham-controlled high-technology interventions. Taken together, we suggest that the experience of successful self-regulation during fMRI-NF training may be therapeutic. We conclude that if fMRI-NF is effective for depression, self-regulation training of higher visual areas may provide an effective alternative

    Interaction between dislocation and coherent twin boundary by quasicontinuum model

    Get PDF
    The interaction between lattice dislocations and Coherent Twin Boundary Σ3{111} of copper has been studied using Quasi-Continuum method. The coherent twin boundary provides high barrier to slip transmission. The dislocation pile-up modifies the stress field at its intersection with the grain boundary. A different reaction process compared with the case of single dislocations is noticed. One observes the nucleation of a Lomer-type dislocation with Burgers vector of ½ and its glide on the (100) cube plane in the adjacent grain. This phenomenon has been observed with Transmission Electron Microscopy at room temperature and in other Molecular Dynamics simulations. We also show a novel interaction mechanism between Lomer-type dislocation and Coherent Twin Boundary. This interaction process leaves a dislocation with a Burgers vector coincident with the complete lattice shift of the Coherent Twin Boundary. Quantitative estimation of critical stress for various transmission phenomena is performed by using irial stress. Such information can be used as input for Discrete Dislocation Dynamics model

    Mass-Loss Rate Determination for the Massive Binary V444 Cyg using 3-D Monte-Carlo Simulations of Line and Polarization Variability

    Get PDF
    A newly developed 3-D Monte Carlo model is used, in conjunction with a multi-line non-LTE radiative transfer model, to determine the mass-loss rate of the Wolf-Rayet (W-R) star in the massive binary \object{V444 Cyg} (WN5+O6). This independent estimate of mass-loss rate is attained by fitting the observed \HeI (5876) \AA and \HeII (5412) \AA line profiles, and the continuum light curves of three Stokes parameters ((I, Q, U)) in the (V) band simultaneously. The high accuracy of our determination arises from the use of many observational constraints, and the sensitivity of the continuum polarization to the mass-loss rate. Our best fit model suggests that the mass-loss rate of the system is (\dot{M}_{\WR}=0.6(\pm 0.2) \times 10^{-5} M_{\sun} \mathrm{yr}^{-1} ), and is independent of the assumed distance to \object{V444 Cyg}. The fits did not allow a unique value for the radius of the W-R star to be derived. The range of the volume filling factor for the W-R star atmosphere is estimated to be in the range of 0.050 (for R_{\WR}=5.0 R_{\sun}) to 0.075 (for R_{\WR}=2.5 R_{\sun}). We also found that the blue-side of \HeI (5876 ) \AA and \HeII (5412) \AA lines at phase 0.8 is relatively unaffected by the emission from the wind-wind interaction zone and the absorption by the O-star atmosphere; hence, the profiles at this phase are suitable for spectral line fittings using a spherical radiative transfer model.Comment: 18 pages, 17 figures: Accepeted for publication in A&

    3D Models of Radiatively Driven Colliding Winds In Massive O+O Star Binaries: I. Hydrodynamics

    Full text link
    The dynamics of the wind-wind collision in massive stellar binaries is investigated using three-dimensional hydrodynamical models which incorporate gravity, the driving of the winds, the orbital motion of the stars, and radiative cooling of the shocked plasma. In this first paper we restrict our study to main-sequence O+O binaries. The nature of the wind-wind collision region is highly dependent on the degree of cooling of the shocked plasma, and the ratio of the flow timescale of the shocked plasma to the orbital timescale. The pre-shock wind speeds are lower in close systems as the winds collide prior to their acceleration to terminal speeds. Radiative inhibition may also reduce the pre-shock wind speeds. Together, these effects can lead to rapid cooling of the post-shock gas. Radiative inhibition is less important in wider systems, where the winds are accelerated to higher speeds before they collide, and the resulting collision region can be largely adiabatic. In systems with eccentric orbits, cold gas formed during periastron passage can persist even at apastron, before being ablated and mixed into its surroundings and/or accelerated out of the system.Comment: 21 pages, 15 figures, accepted for publication in MNRA

    Crystal chemical characterization of mullite-type aluminum borate compounds

    Get PDF
    Al-rich aluminum borates were prepared by different synthesis routes using various Al/B ratios, characterized by diffraction methods, spectroscopy and prompt gamma activation analysis. The 11B NMR data show a small amount of BO4 species in all samples. The chemical analysis indicates a trend in the Al/B ratio instead of a fixed composition. Both methods indicate a solid solution Al5−xB1+xO9 where Al is substituted by B in the range of 1–3%. The structure of B-rich Al4B2O9 (C2/m, a=1488 pm, b=553 pm, c=1502 pm, ß=90.6°), was re-investigated by electron diffraction methods, showing that structural details vary within a crystallite. In most of the domains the atoms are orderly distributed, showing no signal for the postulated channel oxygen atom O5. The absence of O5 is supported by density functional theory calculations. Other domains show a probable disordered configuration of O5 and O10, indicated by diffuse scattering along the b direction.17318
    • …
    corecore