899 research outputs found

    Superconductivity in Weyl semimetal NbP: Bulk vs. surface

    Get PDF
    Transition metal monopnictides belong to the new class of semimetals where the bulk properties are determined by the presence of pairs of nodes with different chirality formed by linear dispersive states in the k-space. Beside the anomaly in the bulk magnetotransport superconductivity is frequently found in some Weyl semimetals. We found signatures of superconductivity in ac and dc magnetization measurements of highly pure and stoichiometric NbP powder. We determined the lower and upper critical field and the Ginzburg-Landau parameter. The relative small superconducting volume fraction is related to either effect of finite grain size and/or surface superconductivity. The last mentioned may originate from either off stoichiometric (Nb-rich) surface layers or a strained surface with different electronic properties. Furthermore the intrinsic normal state susceptibility is determined taking into account a paramagnetic contribution of a few ppm of magnetic impurities

    Direct evaluation of the isotope effect within the framework of density functional theory for superconductors

    Get PDF
    Within recent developments of density functional theory, its numerical implementation and of the superconducting density functional theory is nowadays possible to predict the superconducting critical temperature, Tc, with sufficient accuracy to anticipate the experimental verification. In this paper we present an analytical derivation of the isotope coefficient within the superconducting density functional theory. We calculate the partial derivative of Tc with respect to atomic masses. We verified the final expression by means of numerical calculations of isotope coefficient in monatomic superconductors (Pb) as well as polyatomic superconductors (CaC6). The results confirm the validity of the analytical derivation with respect to the finite difference methods, with considerable improvement in terms of computational time and calculation accuracy. Once the critical temperature is calculated (at the reference mass(es)), various isotope exponents can be simply obtained in the same run. In addition, we provide the expression of interesting quantities like partial derivatives of the deformation potential, phonon frequencies and eigenvectors with respect to atomic masses, which can be useful for other derivations and applications

    CPT theorem in a (5+1) Galilean space-time

    Full text link
    We extend the 5-dimensional Galilean space-time to a (5+1) Galilean space-time in order to define a parity transformation in a covariant manner. This allows us to discuss the discrete symmetries in the Galilean space-time, which is embedded in the (5+1) Minkowski space-time. We discuss the Dirac-type field, for which we give the 8\times 8 gamma matrices explicitly. We demonstrate that the CPT theorem holds in the (5+1) Galilean space-time.Comment: 11 pages, 0 figur

    Schr\"odinger's pure-state steering completed

    Full text link
    Schroedinger investigated entanglement in two-particle state vectors by assuming measurement finding out if the nearby particle is in a given state vector or not. Without interaction with the distant particle, just on account of the entanglement, the distant particle is steered into a certain state vector. In Schroedinger's finite-dimensional case thus any distant-particle state vector can be reached. This theory was extended to infinite-dimensional spaces by the author. The present article completes the extension by throwing light on the fine structure of steering.Comment: 10 pages, Latex2e, no figure

    Weak measurements are universal

    Full text link
    It is well known that any projective measurement can be decomposed into a sequence of weak measurements, which cause only small changes to the state. Similar constructions for generalized measurements, however, have relied on the use of an ancilla system. We show that any generalized measurement can be decomposed into a sequence of weak measurements without the use of an ancilla, and give an explicit construction for these weak measurements. The measurement procedure has the structure of a random walk along a curve in state space, with the measurement ending when one of the end points is reached. This shows that any measurement can be generated by weak measurements, and hence that weak measurements are universal. This may have important applications to the theory of entanglement.Comment: 4 pages, RevTeX format, essentially the published version, reference update

    Jahn-Teller Spectral Fingerprint in Molecular Photoemission: C60

    Get PDF
    The h_u hole spectral intensity for C60 -> C60+ molecular photoemission is calculated at finite temperature by a parameter-free Lanczos diagonalization of the electron-vibration Hamiltonian, including the full 8 H_g, 6 G_g, and 2 A_g mode couplings. The computed spectrum at 800 K is in striking agreement with gas-phase data. The energy separation of the first main shoulder from the main photoemission peak, 230 meV in C60, is shown to measure directly and rather generally the strength of the final-state Jahn-Teller coupling.Comment: 5 pages, 3 figure

    Life of a Fatso : Young, Fat and Vulnerable in a Scandinavian Society of Perfection

    Get PDF
    publishedVersio
    corecore