1,094 research outputs found

    The DρD\to \rho semileptonic and radiative decays within the light-cone sum rules

    Full text link
    The measured branching ratio of the DD meson semileptonic decay Dρe+νeD \to \rho e^+ \nu_e, which is based on the 0.82 fb10.82~{\rm fb^{-1}} CLEO data taken at the peak of ψ(3770)\psi(3770) resonance, disagrees with the traditional SVZ sum rules analysis by about three times. In the paper, we show that this discrepancy can be eliminated by applying the QCD light-cone sum rules (LCSR) approach to calculate the DρD\to \rho transition form factors A1,2(q2)A_{1,2}(q^2) and V(q2)V(q^2). After extrapolating the LCSR predictions of these TFFs to whole q2q^2-region, we obtain 1/Vcd2×Γ(Dρeνe)=(55.459.41+13.34)×1015 GeV1/|V_{\rm cd}|^2 \times \Gamma(D \to \rho e \nu_e) =(55.45^{+13.34}_{-9.41})\times 10^{-15}~{\rm GeV}. Using the CKM matrix element and the D0(D+)D^0(D^+) lifetime from the Particle Data Group, we obtain B(D0ρe+νe)=(1.7490.297+0.421±0.006)×103{\cal B} (D^0\to \rho^- e^+ \nu_e) = (1.749^{+0.421}_{-0.297}\pm 0.006)\times 10^{-3} and B(D+ρ0e+νe)=(2.2170.376+0.534±0.015)×103{\cal B} (D^+ \to \rho^0 e^+ \nu_e) = (2.217^{+0.534}_{-0.376}\pm 0.015)\times 10^{-3}, which agree with the CLEO measurements within errors. We also calculate the branching ratios of the two DD meson radiative processes and obtain B(D0ρ0γ)=(1.7440.704+0.598)×105{\cal B}(D^0\to \rho^0 \gamma)= (1.744^{+0.598}_{-0.704})\times 10^{-5} and B(D+ρ+γ)=(5.0340.958+0.939)×105{\cal B}(D^+ \to \rho^+ \gamma) = (5.034^{+0.939}_{-0.958})\times 10^{-5}, which also agree with the Belle measurements within errors. Thus we think the LCSR approach is applicable for dealing with the DD meson decays.Comment: 12 pages, 7 figures, version to be published in EPJ

    Behavior patterns of online users and the effect on information filtering

    Get PDF
    Understanding the structure and evolution of web-based user-object bipartite networks is an important task since they play a fundamental role in online information filtering. In this paper, we focus on investigating the patterns of online users' behavior and the effect on recommendation process. Empirical analysis on the e-commercial systems show that users have significant taste diversity and their interests for niche items highly overlap. Additionally, recommendation process are investigated on both the real networks and the reshuffled networks in which real users' behavior patterns can be gradually destroyed. Our results shows that the performance of personalized recommendation methods is strongly related to the real network structure. Detail study on each item shows that recommendation accuracy for hot items is almost maximum and quite robust to the reshuffling process. However, niche items cannot be accurately recommended after removing users' behavior patterns. Our work also is meaningful in practical sense since it reveals an effective direction to improve the accuracy and the robustness of the existing recommender systems.Comment: 8 pages, 6 figure

    Higher-order Graph Convolutional Network with Flower-Petals Laplacians on Simplicial Complexes

    Full text link
    Despite the recent successes of vanilla Graph Neural Networks (GNNs) on many tasks, their foundation on pairwise interaction networks inherently limits their capacity to discern latent higher-order interactions in complex systems. To bridge this capability gap, we propose a novel approach exploiting the rich mathematical theory of simplicial complexes (SCs) - a robust tool for modeling higher-order interactions. Current SC-based GNNs are burdened by high complexity and rigidity, and quantifying higher-order interaction strengths remains challenging. Innovatively, we present a higher-order Flower-Petals (FP) model, incorporating FP Laplacians into SCs. Further, we introduce a Higher-order Graph Convolutional Network (HiGCN) grounded in FP Laplacians, capable of discerning intrinsic features across varying topological scales. By employing learnable graph filters, a parameter group within each FP Laplacian domain, we can identify diverse patterns where the filters' weights serve as a quantifiable measure of higher-order interaction strengths. The theoretical underpinnings of HiGCN's advanced expressiveness are rigorously demonstrated. Additionally, our empirical investigations reveal that the proposed model accomplishes state-of-the-art (SOTA) performance on a range of graph tasks and provides a scalable and flexible solution to explore higher-order interactions in graphs

    Coarse Graining for Synchronization in Directed Networks

    Get PDF
    Coarse graining model is a promising way to analyze and visualize large-scale networks. The coarse-grained networks are required to preserve the same statistical properties as well as the dynamic behaviors as the initial networks. Some methods have been proposed and found effective in undirected networks, while the study on coarse graining in directed networks lacks of consideration. In this paper, we proposed a Topology-aware Coarse Graining (TCG) method to coarse grain the directed networks. Performing the linear stability analysis of synchronization and numerical simulation of the Kuramoto model on four kinds of directed networks, including tree-like networks and variants of Barab\'{a}si-Albert networks, Watts-Strogatz networks and Erd\"{o}s-R\'{e}nyi networks, we find our method can effectively preserve the network synchronizability.Comment: 9 pages, 7 figure

    Uncovering missing links with cold ends

    Get PDF
    To evaluate the performance of prediction of missing links, the known data are randomly divided into two parts, the training set and the probe set. We argue that this straightforward and standard method may lead to terrible bias, since in real biological and information networks, missing links are more likely to be links connecting low-degree nodes. We therefore study how to uncover missing links with low-degree nodes, namely links in the probe set are of lower degree products than a random sampling. Experimental analysis on ten local similarity indices and four disparate real networks reveals a surprising result that the Leicht-Holme-Newman index [E. A. Leicht, P. Holme, and M. E. J. Newman, Phys. Rev. E 73, 026120 (2006)] performs the best, although it was known to be one of the worst indices if the probe set is a random sampling of all links. We further propose an parameter-dependent index, which considerably improves the prediction accuracy. Finally, we show the relevance of the proposed index on three real sampling methods.Comment: 16 pages, 5 figures, 6 table
    corecore