12 research outputs found

    Meios de cultura e produção de conídios em Metarhizium Anisopliae(Metsch) Sorokin

    Get PDF
    It was determined the production of Metarhizium anisopliae conidiain Petri dishes containing both complete medium and media with differents rice concentrations, The more productive isolates were M, P and E9 and it was noted that in rice medium high conidia production where obtained with 60 g of rice per liter.Foi estudada a produção de conĂ­dios em meio completo e em meio contendo diferentes concentraçÔes de farinha de arroz, no fungo entomopatogĂȘnico Metarhizium anisopliae. As linhagens mais produtivas em meio completo foram M, E6, A4 e E9; em meio de arroz, verificou-se que maior produção ocorria quando o arroz era adicionado na concentração de 60 g/l

    Infrared (810-nm) low-level laser therapy on rat experimental knee inflammation

    Get PDF
    Arthritis of the knee is the most common type of joint inflammatory disorder and it is associated with pain and inflammation of the joint capsule. Few studies address the effects of the 810-nm laser in such conditions. Here we investigated the effects of low-level laser therapy (LLLT; infrared, 810-nm) in experimentally induced rat knee inflammation. Thirty male Wistar rats (230–250 g) were anesthetized and injected with carrageenan by an intra-articular route. After 6 and 12 h, all animals were killed by CO2 inhalation and the articular cavity was washed for cellular and biochemical analysis. Articular tissue was carefully removed for real-time PCR analysis in order to evaluate COX-1 and COX-2 expression. LLLT was able to significantly inhibit the total number of leukocytes, as well as the myeloperoxidase activity with 1, 3, and 6 J (Joules) of energy. This result was corroborated by cell counting showing the reduction of polymorphonuclear cells at the inflammatory site. Vascular extravasation was significantly inhibited at the higher dose of energy of 10 J. Both COX-1 and 2 gene expression were significantly enhanced by laser irradiation while PGE2 production was inhibited. Low-level laser therapy operating at 810 nm markedly reduced inflammatory signs of inflammation but increased COX-1 and 2 gene expression. Further studies are necessary to investigate the possible production of antiinflammatory mediators by COX enzymes induced by laser irradiation in knee inflammation

    The effect of low-level laser irradiation (In-Ga-Al-AsP - 660 nm) on melanoma in vitro and in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been speculated that the biostimulatory effect of Low Level Laser Therapy could cause undesirable enhancement of tumor growth in neoplastic diseases. The aim of the present study is to analyze the behavior of melanoma cells (B16F10) <it>in vitro </it>and the <it>in vivo </it>development of melanoma in mice after laser irradiation.</p> <p>Methods</p> <p>We performed a controlled <it>in vitro </it>study on B16F10 melanoma cells to investigate cell viability and cell cycle changes by the Tripan Blue, MTT and cell quest histogram tests at 24, 48 and 72 h post irradiation. The <it>in vivo </it>mouse model (male Balb C, n = 21) of melanoma was used to analyze tumor volume and histological characteristics. Laser irradiation was performed three times (once a day for three consecutive days) with a 660 nm 50 mW CW laser, beam spot size 2 mm<sup>2</sup>, irradiance 2.5 W/cm<sup>2 </sup>and irradiation times of 60s (dose 150 J/cm<sup>2</sup>) and 420s (dose 1050 J/cm<sup>2</sup>) respectively.</p> <p>Results</p> <p>There were no statistically significant differences between the <it>in vitro </it>groups, except for an increase in the hypodiploid melanoma cells (8.48 ± 1.40% and 4.26 ± 0.60%) at 72 h post-irradiation. This cancer-protective effect was not reproduced in the <it>in vivo </it>experiment where outcome measures for the 150 J/cm<sup>2 </sup>dose group were not significantly different from controls. For the 1050 J/cm<sup>2 </sup>dose group, there were significant increases in tumor volume, blood vessels and cell abnormalities compared to the other groups.</p> <p>Conclusion</p> <p>LLLT Irradiation should be avoided over melanomas as the combination of high irradiance (2.5 W/cm<sup>2</sup>) and high dose (1050 J/cm<sup>2</sup>) significantly increases melanoma tumor growth <it>in vivo</it>.</p

    Histomorphometric evaluation of bone-guided regeneration in maxillary sinus floor augmentation using nano-hydroxyapatite/beta-tricalcium phosphate composite biomaterial: a case report

    No full text
    Background: The development of techniques in biomaterials design and production added to advanced surgical procedures which enabled better and more predictable clinical out-comes. Maxillary sinus floor augmentation (MSFA) is among the more studied bone-guided regeneration procedure in the literature. The MSFA could be considered the gold standard procedure for bone-guided regeneration as it provides suitable functional and aesthetic solutions to alveolar ridge atrophy due to tooth loss. Purpose: This study aimed to conduct a detailed histomorphometric evaluation of collagen production in SFAs bone-guided regeneration, using nano-hydroxyapatite/beta-tricalcium phos-phate (nano-HA/beta-TCP) composite. Patients and Methods: A 52-year-old female had the left upper second premolar con-demned due to periodontal disease, then a tooth implant replacement was planned. Due to maxillary sinus pneumatization, the MSFA had to be done before implant placement. Nano-HA/beta-TCP composite (2g) was used in the MSFA procedure. After nine months of the healing process, during the Cone Morse implant installation process, bone samples were collected for histologic analysis (sirius red, hematoxylin/eosin, polarized microscopy). Six months after implant installation, a ceramic crown was installed according to the patient's request. Results: Proper masticatory function and aesthetics were re-established. The histomorpho-metric evaluation indicated that nano-HA/beta-TCP composite did not show any area devoid of cellular activity in sirius red or hematoxylin/eosin staining and the percentage (%) of new bone collagen fibers was achieved using polarization technique evaluation. Conclusion: According to these results, nano-HA/beta-TCP composite presented clinical and histomorphometric properties suit to be used as bone-guided regeneration biomaterial in MSFA. Furthermore, nano-HA/beta-TCP composite provided a favorable nano-environment to bone cells, enhancing bone matrix production.info:eu-repo/semantics/publishedVersio

    The effect of low-level laser irradiation (Ga-Al-AsP - 660nm) on in vitro and in vivo melanoma

    No full text
    Background It has been speculated that the biostimulatory effect of Low Level Laser Therapy could cause undesirable enhancement of tumor growth in neoplastic diseases. The aim of the present study is to analyze the behavior of melanoma cells (B16F10) in vitro and the in vivo development of melanoma in mice after laser irradiation. Methods We performed a controlled in vitro study on B16F10 melanoma cells to investigate cell viability and cell cycle changes by the Tripan Blue, MTT and cell quest histogram tests at 24, 48 and 72 h post irradiation. The in vivo mouse model (male Balb C, n = 21) of melanoma was used to analyze tumor volume and histological characteristics. Laser irradiation was performed three times (once a day for three consecutive days) with a 660 nm 50 mW CW laser, beam spot size 2 mm2, irradiance 2.5 W/cm2 and irradiation times of 60s (dose 150 J/cm2) and 420s (dose 1050 J/cm2) respectively. Results There were no statistically significant differences between the in vitro groups, except for an increase in the hypodiploid melanoma cells (8.48 ± 1.40% and 4.26 ± 0.60%) at 72 h post-irradiation. This cancer-protective effect was not reproduced in the in vivo experiment where outcome measures for the 150 J/cm2 dose group were not significantly different from controls. For the 1050 J/cm2 dose group, there were significant increases in tumor volume, blood vessels and cell abnormalities compared to the other groups. Conclusion LLLT Irradiation should be avoided over melanomas as the combination of high irradiance (2.5 W/cm2) and high dose (1050 J/cm2) significantly increases melanoma tumor growth in vivo
    corecore