37 research outputs found

    Month of birth and risk of multiple sclerosis: confounding and adjustments

    Get PDF
    A month of birth effect on multiple sclerosis (MS) risk has been reported from different countries. Recent critics have suggested that this finding is caused by confounding and that adequately adjusting for year and place of birth would markedly reduce this effect. All inhabitants in Norway are registered in the Norwegian Population Registry (Statistics Norway), making this an ideal area for performing adjusted analyses. Using the entire Norwegian population born between 1930 and 1979 (n = 2,899,260), we calculated the excess between observed and expected number of births for each month for 6649 Norwegian MS patients, 5711 mothers, 5247 fathers, and 8956 unaffected siblings. The analyses were adjusted for year of birth and place of birth according to the 19 counties in Norway. An unadjusted analysis revealed 13% fewer MS births than expected in February (P = 0.0015; Bonferroni corrected P = 0.018), 10% more in April (P = 0.0083; Bonferroni corrected P = 0.0996) and 15% more in December (P = 0.00058; Bonferroni corrected P = 0.007). Adjustments for both year and place of birth significantly altered our results for February and December, but even after these adjustments there were still 10% more MS births than expected in April (P = 0.00796; Bonferroni corrected P = 0.096). MS patients had a higher incidence of April births than their siblings (Fisher-exact test; P = 0.011), mothers (Fisher-exact test; P = 0.004), and fathers (Fisher-exact test; P = 0.011) without MS. Adjustments for confounding significantly affected our results. However, even after adjustments, there appears to be a persistent higher than expected frequency of April births in the MS population. © 2014 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association

    Alpha-tocopherol and MRI outcomes in multiple sclerosis - association and prediction

    Get PDF
    Objective: Alpha-tocopherol is the main vitamin E compound in humans, and has important antioxidative and immunomodulatory properties. The aim of this study was to study alpha-tocopherol concentrations and their relationship to disease activity in Norwegian multiple sclerosis (MS) patients. Methods: Prospective cohort study in 88 relapsing-remitting MS (RRMS) patients, originally included in a randomised placebo-controlled trial of omega-3 fatty acids (the OFAMS study), before and during treatment with interferon beta. The patients were followed for two years with repeated 12 magnetic resonance imaging (MRI) scans and nine serum measurements of alpha-tocopherol. Results: During interferon beta (IFNB) treatment, each 10 µmol/L increase in alpha-tocopherol reduced the odds (CI 95%) for simultaneous new T2 lesions by 36.8 (0.5–59.8) %, p = 0.048, and for combined unique activity by 35.4 (1.6–57.7) %, p = 0.042, in a hierarchical regression model. These associations were not significant prior to IFNB treatment, and were not noticeably changed by gender, age, body mass index, HLA-DRB1*15, treatment group, compliance, or the concentrations of 25-hydroxyvitamin D, retinol, neutralising antibodies against IFNB, or the omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid. The corresponding odds for having new T1 gadolinium enhancing lesions two months later was reduced by 65.4 (16.5–85.7) %, p = 0.019, and for new T2 lesions by 61.0 (12.4–82.6) %, p = 0.023. Conclusion: During treatment with IFNB, increasing serum concentrations of alpha-tocopherol were associated with reduced odds for simultaneous and subsequent MRI disease activity in RRMS patients.publishedVersio

    Inflammation markers in multiple sclerosis: CXCL16 reflects and may also predict disease activity

    Get PDF
    Background: Serum markers of inflammation are candidate biomarkers in multiple sclerosis (MS). ω-3 fatty acids are suggested to have anti-inflammatory properties that might be beneficial in MS. We aimed to explore the relationship between serum levels of inflammation markers and MRI activity in patients with relapsing remitting MS, as well as the effect of ω-3 fatty acids on these markers. Methods: We performed a prospective cohort study in 85 relapsing remitting MS patients who participated in a randomized clinical trial of ω-3 fatty acids versus placebo (the OFAMS study). During a period of 24 months 12 repeated magnetic resonance imaging (MRI) scans and nine serum samples were obtained. We measured 10 inflammation markers, including general down-stream markers of inflammation, specific markers of up-stream inflammatory pathways, endothelial action, and matrix regulation. Results: After Bonferroni correction, increasing serum levels of CXCL16 and osteoprotegerin were associated with low odds ratio for simultaneous MRI activity, whereas a positive association was observed for matrix metalloproteinase (MMP) 9. CXCL16 were also associated with low MRI activity the next month, but this was not significant after Bonferroni correction. In agreement with previously reported MRI and clinical results, ω-3 fatty acid treatment did not induce any change in the inflammation markers. Conclusions: Serum levels of CXCL16, MMP-9, and osteoprotegerin reflect disease activity in MS, but are not affected by ω-3 fatty acid treatment. CXCL16 could be a novel biomarker and potential predictor of disease activity in MS.© 2013 Holmøy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Can we prevent or treat multiple sclerosis by individualised vitamin D supply?

    Get PDF
    Apart from its principal role in bone metabolism and calcium homeostasis, vitamin D has been attributed additional effects including an immunomodulatory, anti-inflammatory, and possibly even neuroprotective capacity which implicates a possible role of vitamin D in autoimmune diseases like multiple sclerosis (MS). Indeed, several lines of evidence including epidemiologic, preclinical, and clinical data suggest that reduced vitamin D levels and/or dysregulation of vitamin D homeostasis is a risk factor for the development of multiple sclerosis on the one hand, and that vitamin D serum levels are inversely associated with disease activity and progression on the other hand. However, these data are not undisputable, and many questions regarding the preventive and therapeutic capacity of vitamin D in multiple sclerosis remain to be answered. In particular, available clinical data derived from interventional trials using vitamin D supplementation as a therapeutic approach in MS are inconclusive and partly contradictory. In this review, we summarise and critically evaluate the existing data on the possible link between vitamin D and multiple sclerosis in light of the crucial question whether optimization of vitamin D status may impact the risk and/or the course of multiple sclerosis

    Alpha-tocopherol and MRI outcomes in multiple sclerosis - association and prediction

    Get PDF
    Objective: Alpha-tocopherol is the main vitamin E compound in humans, and has important antioxidative and immunomodulatory properties. The aim of this study was to study alpha-tocopherol concentrations and their relationship to disease activity in Norwegian multiple sclerosis (MS) patients. Methods: Prospective cohort study in 88 relapsing-remitting MS (RRMS) patients, originally included in a randomised placebo-controlled trial of omega-3 fatty acids (the OFAMS study), before and during treatment with interferon beta. The patients were followed for two years with repeated 12 magnetic resonance imaging (MRI) scans and nine serum measurements of alpha-tocopherol. Results: During interferon beta (IFNB) treatment, each 10 µmol/L increase in alpha-tocopherol reduced the odds (CI 95%) for simultaneous new T2 lesions by 36.8 (0.5–59.8) %, p = 0.048, and for combined unique activity by 35.4 (1.6–57.7) %, p = 0.042, in a hierarchical regression model. These associations were not significant prior to IFNB treatment, and were not noticeably changed by gender, age, body mass index, HLA-DRB1*15, treatment group, compliance, or the concentrations of 25-hydroxyvitamin D, retinol, neutralising antibodies against IFNB, or the omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid. The corresponding odds for having new T1 gadolinium enhancing lesions two months later was reduced by 65.4 (16.5–85.7) %, p = 0.019, and for new T2 lesions by 61.0 (12.4–82.6) %, p = 0.023. Conclusion: During treatment with IFNB, increasing serum concentrations of alpha-tocopherol were associated with reduced odds for simultaneous and subsequent MRI disease activity in RRMS patients

    Inflammation markers in multiple sclerosis: CXCL16 reflects and may also predict disease activity

    Get PDF
    Background. Serum markers of inflammation are candidate biomarkers in multiple sclerosis (MS). ω-3 fatty acids are suggested to have anti-inflammatory properties that might be beneficial in MS. We aimed to explore the relationship between serum levels of inflammation markers and MRI activity in patients with relapsing remitting MS, as well as the effect of ω-3 fatty acids on these markers. Methods. We performed a prospective cohort study in 85 relapsing remitting MS patients who participated in a randomized clinical trial of ω-3 fatty acids versus placebo (the OFAMS study). During a period of 24 months 12 repeated magnetic resonance imaging (MRI) scans and nine serum samples were obtained. We measured 10 inflammation markers, including general down-stream markers of inflammation, specific markers of up-stream inflammatory pathways, endothelial action, and matrix regulation. Results. After Bonferroni correction, increasing serum levels of CXCL16 and osteoprotegerin were associated with low odds ratio for simultaneous MRI activity, whereas a positive association was observed for matrix metalloproteinase (MMP) 9. CXCL16 were also associated with low MRI activity the next month, but this was not significant after Bonferroni correction. In agreement with previously reported MRI and clinical results, ω-3 fatty acid treatment did not induce any change in the inflammation markers. Conclusions. Serum levels of CXCL16, MMP-9, and osteoprotegerin reflect disease activity in MS, but are not affected by ω-3 fatty acid treatment. CXCL16 could be a novel biomarker and potential predictor of disease activity in MS
    corecore