156 research outputs found

    Response of Sonchus arvensis to mechanical and cultural weed control

    Get PDF
    In order to study the biology and physical control of Sonchus arvensis, a 3-year field experiment was established in 2001 at Vihti, southern Finland

    Sonchus arvensis - a challenge for organic farming

    Get PDF
    Perennial sow-thistle (Sonchus arvensis L.) represents an increasing problem in Finland. Options for mechanical and cultural control of S. arvensis were studied in a 3 year field experiment on clay soil under organic production

    Terminating ley with mid-summer bare fallow controls Elymus repens

    Get PDF
    The results of this study suggest that mid-summer bare fallow is a relative effective way to reduce the amount of Elymus repens when terminating ley. Early started stubble cultivation is also less sensitive to moist weather, leaving more time for exhausting the rhizome reserves of E. repens. Stubble cultivation and catch crop do increase the costs but not as much as bare fallowing for the whole summer would do. Additionally, mid summer bare fallow allows harvesting one forage yield prior to bare fallowing

    Robust whole-brain segmentation: Application to traumatic brain injury

    Get PDF
    We propose a framework for the robust and fully-automatic segmentation of magnetic resonance (MR) brain images called "Multi-Atlas Label Propagation with Expectation-Maximisation based refinement" (MALP-EM). The presented approach is based on a robust registration approach (MAPER), highly performant label fusion (joint label fusion) and intensity-based label refinement using EM. We further adapt this framework to be applicable for the segmentation of brain images with gross changes in anatomy. We propose to account for consistent registration errors by relaxing anatomical priors obtained by multi-atlas propagation and a weighting scheme to locally combine anatomical atlas priors and intensity-refined posterior probabilities. The method is evaluated on a benchmark dataset used in a recent MICCAI segmentation challenge. In this context we show that MALP-EM is competitive for the segmentation of MR brain scans of healthy adults when compared to state-of-the-art automatic labelling techniques. To demonstrate the versatility of the proposed approach, we employed MALP-EM to segment 125 MR brain images into 134 regions from subjects who had sustained traumatic brain injury (TBI). We employ a protocol to assess segmentation quality if no manual reference labels are available. Based on this protocol, three independent, blinded raters confirmed on 13 MR brain scans with pathology that MALP-EM is superior to established label fusion techniques. We visually confirm the robustness of our segmentation approach on the full cohort and investigate the potential of derived symmetry-based imaging biomarkers that correlate with and predict clinically relevant variables in TBI such as the Marshall Classification (MC) or Glasgow Outcome Score (GOS). Specifically, we show that we are able to stratify TBI patients with favourable outcomes from non-favourable outcomes with 64.7% accuracy using acute-phase MR images and 66.8% accuracy using follow-up MR images. Furthermore, we are able to differentiate subjects with the presence of a mass lesion or midline shift from those with diffuse brain injury with 76.0% accuracy. The thalamus, putamen, pallidum and hippocampus are particularly affected. Their involvement predicts TBI disease progression.This work was partially funded under the 7th Framework Programme by the European Commission (http://cordis.europa.eu/ist/, TBIcare: http://www.tbicare.eu/, last accessed: 8 December 2014). The research was further supported by the National Institute for Health Research (NIHR) Biomedical Research Centre (BRC) based at Imperial College Healthcare NHS Trust and Imperial College London. AH is supported by the Department of Health via the NIHR comprehensive BRC award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London and Kings College Hospital NHS Foundation Trust. This work was further supported by a Medical Research Council (UK) Program Grant (Acute brain injury: heterogeneity of mechanisms, therapeutic targets and outcome effects [G9439390 ID 65883]), the UK National Institute of Health Research Biomedical Research Centre at Cambridge, the Technology Platform funding provided by the UK Department of Health and an EPSRC Pathways to Impact award. VFJN is supported by a Health Foundation/Academy of Medical Sciences Clinician Scientist Fellowship. DKM is supported by an NIHR Senior Investigator Award. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. The funders had no role in study design, data collection and analyses, decision to publish, or preparation of the manuscript

    High level vision with the deformable pyramid

    Get PDF
    Une pyramide de graphes, constituant un modèle multirésoltuion déformable est utilisée pour la reconnaissance de formes. Cette pyramide permet de décrire des formes complexes par des maillages de leur surface, elle est construite à partir d'un volume de référence. Le modèle est ensuite déformé pour s'adapter aux données tout en conservant ses propriétés topologiques et géométriques. Cette nouvelle méthode permet l'extraction rapide, robuste et précise du modèle dans le cadre de l'imagerie cardiaque volumique par résoance magnétique. Les potentialités de la pyramide déformable sont illustrées par l'extraction d'un modèle du thorax et du coeur en mouvement

    Regional brain morphometry in patients with traumatic brain injury based on acute- and chronic-phase magnetic resonance imaging.

    Get PDF
    Traumatic brain injury (TBI) is caused by a sudden external force and can be very heterogeneous in its manifestation. In this work, we analyse T1-weighted magnetic resonance (MR) brain images that were prospectively acquired from patients who sustained mild to severe TBI. We investigate the potential of a recently proposed automatic segmentation method to support the outcome prediction of TBI. Specifically, we extract meaningful cross-sectional and longitudinal measurements from acute- and chronic-phase MR images. We calculate regional volume and asymmetry features at the acute/subacute stage of the injury (median: 19 days after injury), to predict the disability outcome of 67 patients at the chronic disease stage (median: 229 days after injury). Our results indicate that small structural volumes in the acute stage (e.g. of the hippocampus, accumbens, amygdala) can be strong predictors for unfavourable disease outcome. Further, group differences in atrophy are investigated. We find that patients with unfavourable outcome show increased atrophy. Among patients with severe disability outcome we observed a significantly higher mean reduction of cerebral white matter (3.1%) as compared to patients with low disability outcome (0.7%)

    Thalamic Atrophy Without Whole Brain Atrophy Is Associated With Absence of 2-Year NEDA in Multiple Sclerosis

    Get PDF
    Purpose: To study which brain volume measures best differentiate early relapsing MS (RMS) and secondary progressive MS (SPMS) patients and correlate with disability and cognition. To test whether isolated thalamic atrophy at study baseline correlates with NEDA (no evidence of disease activity) at 2 years.Methods: Total and regional brain volumes were measured from 24 newly diagnosed RMS patients 6 months after initiation of therapy and 2 years thereafter, and in 36 SPMS patients. Volumes were measured by SIENAX and cNeuro. The patients were divided into subgroups based on whole brain parenchyma (BP) and thalamic atrophy at baseline. Standard scores (z-scores) were computed by comparing individual brain volumes against healthy controls. A z-score cut-off of - 1.96 was applied to separate atrophic from normal brain volumes. The Expanded Disability Status Scale (EDSS) and Symbol Digit Modalities Test (SDMT) were assessed at baseline and at 2 years. Differences in achieving NEDA-3, NEDA-4, EDSS progression, and SDMT change were analyzed between patients with no thalamic or BP atrophy and in patients with isolated thalamic atrophy at baseline.Results: At baseline, 7 SPMS and 12 RMS patients had no brain atrophy, 8 SPMS and 10 RMS patients had isolated thalamic atrophy and 2 RMS and 20 SPMS patients had both BP and thalamic atrophy. NEDA-3 was reached in 11/19 patients with no brain atrophy but only in 2/16 patients with isolated thalamic atrophy (p = 0.012). NEDA-4 was reached in 7/19 patients with no brain atrophy and in 1/16 of the patients with isolated thalamic atrophy (p = 0.047). At 2 years, EDSS was same or better in 16/19 patients with no brain atrophy but only in 5/17 patients with isolated thalamic atrophy (p = 0.002). There was no significant difference in the EDSS, relapses or SDMT between patients with isolated thalamic atrophy and no atrophy at baseline.Conclusion: Patients with isolated thalamic atrophy were at a higher risk for not reaching 2-year NEDA-3 and for EDSS increase than patients with no identified brain atrophy. The groups were clinically indistinguishable. A single measurement of thalamic and whole brain atrophy could help identify patients needing most effective therapies from early on

    Predicting Global Cognitive Decline in the General Population Using the Disease State Index

    Get PDF
    Background: Identifying persons at risk for cognitive decline may aid in early detection of persons at risk of dementia and to select those that would benefit most from therapeutic or preventive measures for dementia. Objective: In this study we aimed to validate whether cognitive decline in the general population can be predicted with multivariate data using a previously proposed supervised classification method: Disease State Index (DSI). Methods: We included 2,542 participants, non-demented and without mild cognitive impairment at baseline, from the population-based Rotterdam Study (mean age 60.9 ± 9.1 years). Participants with significant global cognitive decline were defined as the 5% of participants with the largest cognitive decline per year. We trained DSI to predict occurrence of significant global cognitive decline using a large variety of baseline features, including magnetic resonance imaging (MRI) features, cardiovascular risk factors, APOE-ε4 allele carriership, gait features, education, and baseline cognitive function as predictors. The prediction performance was assessed as area under the receiver operating characteristic curve (AUC), using 500 repetitions of 2-fold cross-validation experiments, in which (a randomly selected) half of the data was used for training and the other half for testing. Results: A mean AUC (95% confidence interval) for DSI prediction was 0.78 (0.77–0.79) using only age as input feature. When using all available features, a mean AUC of 0.77 (0.75–0.78) was obtained. Without age, and with age-corrected features and feature selection on MRI features, a mean AUC of 0.70 (0.63–0.76) was obtained, showing the potential of other features besides age. Conclusion: The best performance in the prediction of global cognitive decline in the general population by DSI was obtained using only age as input feature. Other features showed potential, but did not improve prediction. Future studies should evaluate whether the performance could be improved by new features, e.g., longitudinal features, and other prediction methods

    Quantification of Dynamic Morphological Drug Responses in 3D Organotypic Cell Cultures by Automated Image Analysis

    Get PDF
    Glandular epithelial cells differentiate into complex multicellular or acinar structures, when embedded in three-dimensional (3D) extracellular matrix. The spectrum of different multicellular morphologies formed in 3D is a sensitive indicator for the differentiation potential of normal, non-transformed cells compared to different stages of malignant progression. In addition, single cells or cell aggregates may actively invade the matrix, utilizing epithelial, mesenchymal or mixed modes of motility. Dynamic phenotypic changes involved in 3D tumor cell invasion are sensitive to specific small-molecule inhibitors that target the actin cytoskeleton. We have used a panel of inhibitors to demonstrate the power of automated image analysis as a phenotypic or morphometric readout in cell-based assays. We introduce a streamlined stand-alone software solution that supports large-scale high-content screens, based on complex and organotypic cultures. AMIDA (Automated Morphometric Image Data Analysis) allows quantitative measurements of large numbers of images and structures, with a multitude of different spheroid shapes, sizes, and textures. AMIDA supports an automated workflow, and can be combined with quality control and statistical tools for data interpretation and visualization. We have used a representative panel of 12 prostate and breast cancer lines that display a broad spectrum of different spheroid morphologies and modes of invasion, challenged by a library of 19 direct or indirect modulators of the actin cytoskeleton which induce systematic changes in spheroid morphology and differentiation versus invasion. These results were independently validated by 2D proliferation, apoptosis and cell motility assays. We identified three drugs that primarily attenuated the invasion and formation of invasive processes in 3D, without affecting proliferation or apoptosis. Two of these compounds block Rac signalling, one affects cellular cAMP/cGMP accumulation. Our approach supports the growing needs for user-friendly, straightforward solutions that facilitate large-scale, cell-based 3D assays in basic research, drug discovery, and target validation.</p

    Evaluating severity of white matter lesions from computed tomography images with convolutional neural network

    Get PDF
    Purpose Severity of white matter lesion (WML) is typically evaluated on magnetic resonance images (MRI), yet the more accessible, faster, and less expensive method is computed tomography (CT). Our objective was to study whether WML can be automatically segmented from CT images using a convolutional neural network (CNN). The second aim was to compare CT segmentation with MRI segmentation. Methods The brain images from the Helsinki University Hospital clinical image archive were systematically screened to make CT-MRI image pairs. Selection criteria for the study were that both CT and MRI images were acquired within 6 weeks. In total, 147 image pairs were included. We used CNN to segment WML from CT images. Training and testing of CNN for CT was performed using 10-fold cross-validation, and the segmentation results were compared with the corresponding segmentations from MRI. Results A Pearson correlation of 0.94 was obtained between the automatic WML volumes of MRI and CT segmentations. The average Dice similarity index validating the overlap between CT and FLAIR segmentations was 0.68 for the Fazekas 3 group. Conclusion CNN-based segmentation of CT images may provide a means to evaluate the severity of WML and establish a link between CT WML patterns and the current standard MRI-based visual rating scale.Peer reviewe
    corecore