71 research outputs found

    Aerosol exposure versus aerosol cooling of climate: what is the optimal emission reduction strategy for human health?

    Get PDF
    Particles, climate change, and health have thought-provoking interactions. Air pollution is one of the largest environmental problems concerning human health. On the other hand, aerosol particles can have a cooling effect on climate and a reduction of those emissions may result in an increased temperature globally, which in turn may have negative health effects. The objective of this work was to investigate the "total health effects" of aerosol emissions, which include both exposure to particles and consequences for climate change initiated by particles. As a case study the "total health effect" from ship emissions was derived by subtracting the number of deaths caused by exposure with the estimated number of lives saved from the cooling effect of the emissions. The analysis showed that, with current level of scientific understanding, it could not be determined whether ship emissions are negative or positive for human health on a short time scale. This first attempt to approximate the combined effect of particle emissions on health shows that reductions of particulate air pollution will in some cases (black carbon) have win-win effects on health and climate, but sometimes also cause a shift from particle exposure-related health effects towards an increasing risk of health consequences from climate change. Thus, measures to reduce aerosol emissions have to be coupled with climate change mitigation actions to achieve a full health benefit on a global level

    Quantification of differences between occupancy and total monitoring periods for better assessment of exposure to particles in indoor environments

    Get PDF
    For the assessment of personal exposure, information about the concentration of pollutants when people are in given indoor environments (occupancy time) are of prime importance. However this kind of data frequently is not reported. The aim of this study was to assess differences in particle characteristics between occupancy time and the total monitoring period, with the latter being the most frequently used averaging time in the published data. Seven indoor environments were selected in Sweden and Finland: an apartment, two houses, two schools, a supermarket, and a restaurant. They were assessed for particle number and mass concentrations and number size distributions. The measurements using a Scanning Mobility Particle Sizer and two photometers were conducted for seven consecutive days during winter in each location. Particle concentrations in residences and schools were, as expected, the highest during occupancy time. In the apartment average and median PM2.5 mass concentrations during the occupancy time were 29% and 17% higher, respectively compared to total monitoring period. In both schools, the average and medium values of the PM2.5 mass concentrations were on average higher during teaching hours compared to the total monitoring period by 16% and 32%, respectively. When it comes to particle number concentrations (PNC), in the apartment during occupancy, the average and median values were 33% and 58% higher, respectively than during the total monitoring period. In both houses and schools the average and median PNC were similar for the occupancy and total monitoring periods. General conclusions on the basis of measurements in the limited number of indoor environments cannot be drawn. However the results confirm a strong dependence on type and frequency of indoor activities that generate particles and site specificity. The results also indicate that the exclusion of data series during non-occupancy periods can improve the estimates of particle concentrations and characteristics suitable for exposure assessment, which is crucial for estimating health effects in epidemiological and toxicological studies. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).Peer reviewe

    Regional Inhaled Deposited Dose of Urban Aerosols in an Eastern Mediterranean City

    Get PDF
    We calculated the regional deposited dose of inhaled particulate matter based on number/mass concentrations in Amman, Jordan. The dose rate was the highest during exercising but was generally lower for females compared to males. The fine particles dose rate was 1010–1011 particles/h (101–102 ”g/h). The PM10 dose rate was 49–439 ”g/h for males and 36–381 ”g/h for females. While resting, the PM10 deposited in the head airways was 67–77% and 8–12% in the tracheobronchial region. When exercising, the head airways received 37–44% of the PM10, whereas the tracheobronchial region received 31–35%. About 8% (exercise) and 14–16% (rest) of the PM2.5 was received in the head airways, whereas the alveolar received 74–76% (exercise) and 54–62% (rest). Extending the results for common exposure scenarios in the city revealed alarming results for service workers and police officers; they might receive PM2.5 and 220 ”g/h PM10 while doing their duty on main roads adjacent to traffic. This is especially critical for a pregnant police officer. Outdoor athletic activities (e.g., jogging along main roads) are associated with high PM2.5 and PM10 dose rates (100 ”g/h and ~425 ”g/h, respectively)

    Regional Inhaled Deposited Dose of Urban Aerosols in an Eastern Mediterranean City

    Get PDF
    We calculated the regional deposited dose of inhaled particulate matter based on number/mass concentrations in Amman, Jordan. The dose rate was the highest during exercising but was generally lower for females compared to males. The fine particles dose rate was 1010–1011 particles/h (101–102 ”g/h). The PM10 dose rate was 49–439 ”g/h for males and 36–381 ”g/h for females. While resting, the PM10 deposited in the head airways was 67–77% and 8–12% in the tracheobronchial region. When exercising, the head airways received 37–44% of the PM10, whereas the tracheobronchial region received 31–35%. About 8% (exercise) and 14–16% (rest) of the PM2.5 was received in the head airways, whereas the alveolar received 74–76% (exercise) and 54–62% (rest). Extending the results for common exposure scenarios in the city revealed alarming results for service workers and police officers; they might receive PM2.5 and 220 ”g/h PM10 while doing their duty on main roads adjacent to traffic. This is especially critical for a pregnant police officer. Outdoor athletic activities (e.g., jogging along main roads) are associated with high PM2.5 and PM10 dose rates (100 ”g/h and ~425 ”g/h, respectively)

    LEDAkem: a post-quantum key encapsulation mechanism based on QC-LDPC codes

    Full text link
    This work presents a new code-based key encapsulation mechanism (KEM) called LEDAkem. It is built on the Niederreiter cryptosystem and relies on quasi-cyclic low-density parity-check codes as secret codes, providing high decoding speeds and compact keypairs. LEDAkem uses ephemeral keys to foil known statistical attacks, and takes advantage of a new decoding algorithm that provides faster decoding than the classical bit-flipping decoder commonly adopted in this kind of systems. The main attacks against LEDAkem are investigated, taking into account quantum speedups. Some instances of LEDAkem are designed to achieve different security levels against classical and quantum computers. Some performance figures obtained through an efficient C99 implementation of LEDAkem are provided.Comment: 21 pages, 3 table

    Measurement report: Atmospheric fluorescent bioaerosol concentrations measured during 18 months in a coniferous forest in the south of Sweden

    Get PDF
    Biological aerosol particles affect human health, are essential for microbial and gene dispersal, and have been proposed as important agents for atmospheric processes. However, the abundance and size distributions of atmospheric biological particles are largely unknown. In this study we used a laser-induced fluorescence instrument to measure fluorescent biological aerosol particle (FBAP) concentrations for 18 months (October 2020–April 2022) at a rural, forested site in Sweden. The aim of this study was to investigate FBAP number concentrations (NFBAP) over time and analyze their relationship with meteorological parameters. NFBAP was highest in summer and lowest in winter, exhibiting a ∌ 5-fold difference between these seasons. The median NFBAP was 0.0050, 0.0025, 0.0027, and 0.0126 cm−3 in fall, winter, spring, and summer, respectively, and constituted ∌ 0.1–0.5 % of the total supermicron particle number concentration. NFBAP was dominated by the smallest measured size fraction (1–3 ”m), suggesting that the main portions of the biological particles measured were due to single bacterial cells, fungal spores, and bacterial agglomerates. NFBAP was significantly correlated with increasing air temperature (P&lt;0.01) in all seasons. For most of the campaign NFBAP was seen to increase with wind speed (P&lt;0.01), while the relationship with relative humidity was for most of the campaign nonsignificant (46 %) but for a large part (30 %) negative (P&lt;0.05). Our results indicate that NFBAP was highest during warm and dry conditions when wind speeds were high, suggesting that a major part of the FBAP in spring and summer was due to mechanical aerosol generation and release mechanisms. In fall, relative humidity may have been a more important factor in bioaerosol release. This is one of the longest time series of atmospheric FBAPs, which are greatly needed for estimates of bioaerosol background concentrations in comparable regions.</p

    Airspace Dimension Assessment (AiDA) by inhaled nanoparticles: benchmarking with hyperpolarised 129Xe diffusion-weighted lung MRI

    Get PDF
    Enlargements of distal airspaces can indicate pathological changes in the lung, but accessible and precise techniques able to measure these regions are lacking. Airspace Dimension Assessment with inhaled nanoparticles (AiDA) is a new method developed for in vivo measurement of distal airspace dimensions. The aim of this study was to benchmark the AiDA method against quantitative measurements of distal airspaces from hyperpolarised 129Xe diffusion-weighted (DW)-lung magnetic resonance imaging (MRI). AiDA and 129Xe DW-MRI measurements were performed in 23 healthy volunteers who spanned an age range of 23–70 years. The relationship between the 129Xe DW-MRI and AiDA metrics was tested using Spearman’s rank correlation coefficient. Significant correlations were observed between AiDA distal airspace radius (rAiDA) and mean 129Xe apparent diffusion coefficient (ADC) (p < 0.005), distributed diffusivity coefficient (DDC) (p < 0.001) and distal airspace dimension (LmD) (p < 0.001). A mean bias of − 1.2 ”m towards rAiDA was observed between 129Xe LmD and rAiDA, indicating that rAiDA is a measure of distal airspace dimension. The AiDA R0 intercept correlated with MRI 129Xe α (p = 0.02), a marker of distal airspace heterogeneity. This study demonstrates that AiDA has potential to characterize the distal airspace microstructures and may serve as an alternative method for clinical examination of the lungs

    Secondary organic aerosol formation from idling gasoline passenger vehicle emissions investigated in a smog chamber

    Get PDF
    Gasoline vehicles have recently been pointed out as potentially the main source of anthropogenic secondary organic aerosol (SOA) in megacities. However, there is a lack of laboratory studies to systematically investigate SOA formation in real-world exhaust. In this study, SOA formation from pure aromatic precursors, idling and cold start gasoline exhaust from three passenger vehicles (EURO2–EURO4) were investigated with photo-oxidation experiments in a 6 m3 smog chamber. The experiments were carried out down to atmospherically relevant organic aerosol mass concentrations. The characterization instruments included a high-resolution aerosol mass spectrometer and a proton transfer mass spectrometer. It was found that gasoline exhaust readily forms SOA with a signature aerosol mass spectrum similar to the oxidized organic aerosol that commonly dominates the organic aerosol mass spectra downwind of urban areas. After a cumulative OH exposure of ~5 × 106 cm−3 h, the formed SOA was 1–2 orders of magnitude higher than the primary OA emissions. The SOA mass spectrum from a relevant mixture of traditional light aromatic precursors gave f43 (mass fraction at m/z = 43), approximately two times higher than to the gasoline SOA. However O : C and H : C ratios were similar for the two cases. Classical C6–C9 light aromatic precursors were responsible for up to 60% of the formed SOA, which is significantly higher than for diesel exhaust. Important candidates for additional precursors are higher-order aromatic compounds such as C10 and C11 light aromatics, naphthalene and methyl-naphthalenes. We conclude that approaches using only light aromatic precursors give an incomplete picture of the magnitude of SOA formation and the SOA composition from gasoline exhaust

    The LeucoPatchÂź system in the management of hard-to-heal diabetic foot ulcers: study protocol for a randomised controlled trial

    Get PDF
    Background: Diabetic foot ulcers are a common and severe complication of diabetes mellitus. Standard treatment includes debridement, offloading, management of infection and revascularisation where appropriate, although healing times may be long. The LeucoPatchÂź device is used to generate an autologous platelet-rich fibrin and leucocyte wound dressing produced from the patient's own venous blood by centrifugation, but without the addition of any reagents. The final product comprises a thin, circular patch composed predominantly of fibrin together with living platelets and leucocytes. Promising results have been obtained in non-controlled studies this system, but this now needs to be tested in a randomised controlled trial (RCT). If confirmed, the LeucoPatchÂź may become an important new tool in the armamentarium in the management of diabetic foot ulcers which are hard-to-heal. Methods: People with diabetes and hard-to-heal ulcers of the foot will receive either pre-specified good standard care or good standard care supplemented by the application of the LeucoPatchÂź device. The primary outcome will be the percentage of ulcers healed within 20 weeks. Healing will be defined as complete epithelialisation without discharge that is maintained for 4 weeks and is confirmed by an observer blind to randomisation group. Discussion: Ulcers of the foot are a major source of morbidity to patients with diabetes and costs to health care economies. The study population is designed to be as inclusive as possible with the aim of maximising the external validity of any findings. The primary outcome measure is healing within 20 weeks of randomisation and the trial also includes a number of secondary outcome measures. Among these are rate of change in ulcer area as a predictor of the likelihood of eventual healing, minor and major amputation of the target limb, the incidence of infection and quality of life. Trial registration: International Standard Randomised Controlled Trial, ISRCTN27665670. Registered on 5 July 2013
    • 

    corecore