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� Only the concentrations from occupancy periods should be used for the exposure assessment.
� Inclusion of non-occupancy data for exposure assessment underestimated the PM2.5 mass concentrations in residences and schools.
� PNC indoors varied to a great degree in residences and was influenced by indoor activities and site specificity.
� In an apartment, the median PNC was 58% higher during occupancy time than during total monitoring period.
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a b s t r a c t

For the assessment of personal exposure, information about the concentration of pollutants when people
are in given indoor environments (occupancy time) are of prime importance. However this kind of data
frequently is not reported. The aim of this study was to assess differences in particle characteristics
between occupancy time and the total monitoring period, with the latter being the most frequently used
averaging time in the published data. Seven indoor environments were selected in Sweden and Finland:
an apartment, two houses, two schools, a supermarket, and a restaurant. They were assessed for particle
number and mass concentrations and number size distributions. The measurements using a Scanning
Mobility Particle Sizer and two photometers were conducted for seven consecutive days during winter in
each location. Particle concentrations in residences and schools were, as expected, the highest during
occupancy time. In the apartment average and median PM2.5 mass concentrations during the occupancy
time were 29% and 17% higher, respectively compared to total monitoring period. In both schools, the
average and medium values of the PM2.5 mass concentrations were on average higher during teaching
hours compared to the total monitoring period by 16% and 32%, respectively. When it comes to particle
number concentrations (PNC), in the apartment during occupancy, the average and median values were
33% and 58% higher, respectively than during the total monitoring period. In both houses and schools the
average and median PNC were similar for the occupancy and total monitoring periods. General con-
clusions on the basis of measurements in the limited number of indoor environments cannot be drawn.
However the results confirm a strong dependence on type and frequency of indoor activities that
generate particles and site specificity. The results also indicate that the exclusion of data series during
non-occupancy periods can improve the estimates of particle concentrations and characteristics suitable
for exposure assessment, which is crucial for estimating health effects in epidemiological and toxico-
logical studies.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
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1. Introduction

In numerous epidemiological studies, outdoor fine particulate
matter PM2.5 (particles with diameter smaller than 2.5 mm) has
been associated with cardiopulmonary diseases and increased
mortality (Pope and Dockery, 2006). However, we spend the ma-
jority of our time indoors (about 90%) (Leech et al., 2002) where
particles of both outdoor and indoor origin are found. Poor corre-
lations have been found between outdoor PM2.5 and personal
exposure, which initiated a debate whether the outdoor PM is a
good surrogate for exposure to PM (Meng et al., 2005; Wilson and
Brauer, 2006). This is because apart from outdoor PM sources, in-
door, work related, in-vehicle sources and personal activities also
contribute to personal exposure. Many indoor sources generate
particles in amounts that exceed levels observed outdoors by far
(He et al., 2004; Long et al., 2000). Recent studies show that about
60% of exposure to ultrafine particles (<100 nm) in residences
comes from indoor sources (Isaxon et al., 2014; Bek€o et al., 2013;
Bhangar et al., 2011). Particles emitted from different sources
have different physico-chemical characteristics. It may thus be that
particles generated indoors have different health effects than those
of outdoor origin. However epidemiological studies on population
representative scale, so far have been exclusively based on outdoor
particle characteristics. This is mainly due to lack of population
representative data on indoor particle characteristics suitable for
epidemiological studies.

Particles found indoors consist of: 1) outdoor particles that
infiltrated indoors, 2) particles emitted indoors and 3) particles
formed indoors through reactions of gas-phase precursors emitted
both indoors and outdoors (Morawska and Salthammer, 2003).
Concentration of particles in indoor environments are influenced
by many factors such as building characteristics, geographical
location, outdoor pollution, type of interiors, type of cooking ap-
pliances, human activities, hobbies, cleaning practices, and other
practices (burning candles, incense etc.) which all vary to a great
extent. Various indoor activities are known sources of fine particles
such as tobacco smoking, cooking (frying, grilling, baking, etc.), use
of gas and electric stoves, toasters, gas-powered clothes dryers,
fireplaces, candle and incense burning, electronic cigarettes,
decorative ethanol fireplaces, use of photocopiers, hair spray,
cleaning products containing terpenes (which in presence of ozone
form secondary aerosols) (Schripp et al., 2014; Schober et al., 2013;
Abt et al., 2000; Dennekamp et al., 2001; He et al., 2004; Hussein
et al., 2006; Lee and Hsu, 2007; Long et al., 2000; Ogulei et al.,
2006; Wainman et al., 2000; Wallace, 2006; Weschler, 2003). In
general more information is available on outdoor particle charac-
teristics while data on indoor particle characteristics remain
limited.

Studies assessing particle concentrations indoors, outdoors and
from personal monitoring have been reviewed by Morawska et al.
(2013). In summary there are many studies based on integrated
particle mass concentration measurements but studies investi-
gating time-dependant changes in particle mass and number are
limited. Averaging times in the existing studies vary to a great
degree and comprise: hours (8, 24, 48 h), days, seasons, years,
active sources, no sources and seldom occupancy (occupant present
in a residence) or non-occupancy time (Morawska et al., 2013). The
most frequently used averaging time is the total monitoring period.
From the personal exposure perspective, information about particle
concentrations when people are in given microenvironments are of
prime importance, however this data is frequently not available.

Scattered information on particle number concentrations (PNC)
and emission factors for indoor sources can be found in several
publications, but the available data is far from being complete
(Torkmahalleh et al., 2012; Buonanno et al., 2009; Ogulei et al.,
2006; Wallace, 2006; Dennekamp et al., 2001; Hussein et al.,
2005; Morawska et al., 2003; Wallace et al., 2004).

The aim of the study was to assess differences in particle char-
acteristics between occupancy and the total monitoring period,
with the latter being the most frequently used averaging time in
published studies on particle characteristics in indoor environ-
ments. Assessed particle characteristics comprise: number and
mass concentrations as well as number size distributions. Addi-
tionally this study aims to identify indoor sources of particles and
estimate their source strength to understand the difference be-
tween occupancy and the total monitoring period.

2. Materials and methods

2.1. Sampling sites

The sampling sites consisted of: an apartment, two houses (HA
and HB), two schools (SA and SB), a supermarket, and a restaurant.
The majority of the sampling sites are situated in southern Sweden,
whereas the house HA is situated in southern Finland. Particle
measurements were performed for at least seven consecutive days
in each location. In Swedish locations measurements took place
during the winter of 2006/2007, whereas the data from a Finish
house HA, were extracted from measurements conducted in
February 2001. Table 1 summarises information about all sampling
sites. Activities were identified using information from log books
kept by occupants in the residences. In the schools, supermarket
and restaurant, time schedules and interviews with employees
were used to identify various activities.

2.1.1. Apartment
Apartment is situated on the third floor of a residential building,

heated by district heating. Most of the time the windows were kept
closed due to low outdoor temperature (daily mean between 0.5
and 3.5 �C). Two non-smoking, employed adults lived in the
apartment during the measurements. On one occasion a dinner
party took placewith four invited guests. An electric stovewas used
for cooking. Even though an exhaust fan above the oven was
installed, the occupants did not use it due to noise disturbance.

2.1.2. House HA
House HA is situated in a suburban area in Espoo, which is part

of the Helsinki Metropolitan Area. It is a two-level detached house.
The measurements were performed on the on a ground floor in a
living room, while kitchen is on second floor where major activities
took place. Two non-smoking adults and one child lived in the
house. Due to low outdoor temperatures, windows were kept
closed most of the time (daily mean outdoor temperatures
between �22 and 2 �C). An electric stove was used for cooking. A
boiler fired with wood logs was used for heating.

2.1.3. House HB
House HB is situated in a remote area in rural surroundings. It is

a three-level detached house. The measurements were performed
on the second floor close to a staircase. Two non-smoking adults
lived in the house. Windowswere also kept closed most of the time
due to low outdoor temperatures (�5 to 1 �C). An electric stovewas
used for cooking. A boiler fired with wood logs was used for
heating.

2.1.4. School SA
School SA is an elementary school. It is a one-level building,

from the 1970s. The ventilation operates on weekdays between
5:00 and 18:00. Teaching hours onweekdays are between 8:00 and
16:00.



Table 1
Summary of sampling sites including: location, type of ventilation, filters used, measured air exchange rates (AER), sites' volume, sampling duration, and configuration of
performed measurements indoor and outside.

Sampling
site

Locationa Type of ventilation
and filters used

Occupancyb AER Site's volume Measurements

(%) (h�1) (m3) Date Number
of days

Indoor Simultaneous/alternatec

measurements outside

Apartment Malm€o centre Naturald 70 0.3e ~280 Feb '07 10 SMPS, DustTrak SMPS (monitoring station),
DustTrak

House HA Outskirts of Helsinki Naturald 85 0.75 ~600 Feb '01 7 DMPS DMPSc

House HB Rural Naturalf 78 0.12e ~320 Feb '06 8 SMPS SMPS (monitoring station)
School SA Outskirts of Lund Mechanical, electrically

charged synthetic F7g
33 2.4h ~900 Oct '06 10 SMPS, DustTrak SMPSc

School SB Outskirts of Lund Natural 33 0.4h ~5400 Mar '07 11 SMPS, DustTrak SMPSc, DustTrak
Supermarket Outskirts of Lund Mechanical, glass

fibre F7g
55 9.7i ~23 400 Jan '07 7 SMPS, DustTrak SMPSc,j, DustTrak

Restaurant Lund centre Mechanical, glass
fibre F7g

71 8.5i ~900 Dec '06 7 SMPS, DustTrak SMPSc,j, DustTrak

a Lund (Sweden, 80 000 inhabitants), Malm€o (Sweden, 240 000 inhabitants), Helsinki (610 000 inhabitants).
b Percentage of occupancy time (people present at given location) out of total monitoring period.
c Alternate measurements by SMPS system; when indicated data obtained from monitoring stations (see Materials and Methods). Simultaneous measurements by two

DustTraks.
d Natural ventilation with additional occupant controlled kitchen exhaust (kitchen hood).
e Measured at low ventilation conditions, i.e. windows closed, doors between rooms opened.
f Natural ventilation with additional occupant controlled kitchen and bathroom exhaust (both operate simultaneously upon switching).
g Filter class according to EN 779: 2002.
h Measured at low ventilation conditions, i.e. windows and doors closed.
i Measured during normal opening hours, doors opening not controlled.
j Measured in supplied ventilation air.
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2.1.5. School SB
School SB is a secondary school. It is a two-level building with

natural ventilation, built in 1997. There are 8 classrooms. Teaching
hours are on weekdays between 8:00 and 16:00.

2.1.6. Supermarket
The ventilation supplies heated and filtered air and operates on

weekdays between 4:30 and 22:00 and onweekends between 6:30
and 20:30. Measurements were performed in the area with
washing powders, cleaning products and air fresheners. The
opening hours weekdays are 8:00e22:00, and on weekends
9:00e20:00.

2.1.7. Restaurant
Restaurant is a fast food restaurant. The ventilation operates

24 h a day, seven days a week. Measurements were performed in a
dining area that seats ~100. The opening hours are: 9:00e24:00:
Monday to Thursday and Sunday, 9:00e4:00 Friday and Saturday.

2.2. Instruments and measurements

Instruments, recording continuously, were placed in a specif-
ically designed and insulated enclosure

2.2.1. SMPS
A Scanning Mobility Particle Sizer (SMPS 3934, TSI Inc., USA)

consisting of a Differential Mobility Analyser (Long Column DMA,
TSI Inc., USA) and Condensation Particle Counter (CPC 3010, TSI Inc.,
USA) forming. The SMPS was used in Swedish sites and measured
particles between 15 and 700 nm, used sampling time 180 s. An
automatic valve was used to switch between indoor and outdoor
air, or between indoor and supplied ventilation air, see Table 1. A
correction for particle losses due to diffusion in the DMA and tubing
(Karlsson andMartinsson, 2003) was applied. As an example 45% of
the 20 nm particles from ventilation/outdoor air were lost. The
same procedure was used in the house HA in Finland using Dif-
ferential Mobility Particle Sizer (DMPS). DMPS measured particle
number size distributions between 15 and 400 nm, and consisted of
DMA (HAUKE 28.5 cm) and CPC (CPC 3010, TSI, Inc.).
2.2.2. DustTrak
A photometer (DustTrak 8520, TSI Inc., USA) was used for indi-

rect mass concentration measurements of PM2.5 (down to ~0.1 mm),
recorded values were one minute averages. In some locations a
second DustTrak (the same model) was placed on the roof for
simultaneous outdoor concentrations monitoring (see Table 1). The
DustTrak's response is dependent on aerosol material (refractive
index) and the size distribution and it was reported that it might
significantly overestimate the true PM2.5 mass concentration
(Yanosky et al., 2002). Laboratory comparison of DustTrak and
Tapered Element Oscillating Microbalance (TEOM, 50 �C, model
1400a, R&P Inc.) of PM2.5 readings, using typical indoor sources
such as candles, incense and frying onions were conducted (details
in Wierzbicka, 2008). The derived and used for indoor data
correction factor was 0.49 ðCPM2:5 TEOM=CPM2:5 DustTrakÞ. Outdoor
DustTrak readings were compared to the TEOMbymeasuring at the
monitoring station in Vavihill. The derived and used correction
factor was 0.29. Nevertheless, all the DustTrak readings presented
here, even after correction, remain only approximations of the
PM2.5 mass concentration.
2.2.3. Air exchange rate (AER)
Air exchange rate (AER) was measured at each sampling site

using a 1312 Photoacoustic Multi-gas Monitor together with a 1303
Multipoint Sampler and Doser (Innova AirTech Instruments). A
tracer decay method was used with sulphur hexafluoride (SF6) as
the tracer gas.
2.2.4. Outdoor particle characteristics
Outdoor particle characteristics for the apartment were ob-

tained from monitoring point at the roof top of the town hall in
Malm€o city centre (Roldin et al., 2010) situated about 2 km from the
apartment, average values for winter 2006/2007 were used. For
house HB outdoor concentrations were obtained from situated
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nearby rural monitoring station in Vavihill (part of the European
ACTRIS infrastructure network) (Kristensson et al., 2008).

2.3. Data presentation and analysis

PNC e denotes the particle number concentrations in the
measured size range i.e. 15e700 nm, with the exception for house
HAwhere the measured size range was 15e400 nm. The difference
in measured size range should not affect the comparisons though,
because PNC in the size range 400e700 nm is only a small fraction
of particles smaller than 1000 nm. The data presented in this article
were divided into various periods: total monitoring period or site
average, defined as an average of the entire monitoring duration;
occupancy time, defined as time when at least one person is present
in given indoor environment, in case of schools the occupancy time
reflects teaching hours and in the supermarket and restaurant,
opening hours; non-occupancy, no one is present in given indoor
environment; active sources period, time when an elevated PNC (a
sharp increase) associated with indoor activity was observed until
the concentration went down to average background (no active
source) level.

2.4. Source strength estimations

Particle source strengthswere calculated using themass balance
differential equation:

dCin
dt

¼ PaCout þ S
V
�
�
aþ k

�
Cin (1)

where Cin and Cout are indoor and outdoor PNC (particles cm�3),
respectively; P is the penetration factor (h�1); a is AER (h�1); k is the
particle deposition rate (h�1); S is source strength (particles h�1);
and V is the volume of the apartment (m3).

The simplified solution for S to the Equation (1) given byWallace
et al. (2004) was used:

S ¼ Vðaþ kÞDCin
1� e�ðaþkÞt (2)

where the following assumptions weremade: a) Equation (1) refers
to a particular particle size, where P, k and Smay all be functions of
particle size, b) coagulation and condensation processes were
neglected, c) constant outdoor concentration during the active in-
door source episode and subsequent particle decay, d) constant
values for P, a, k and S during the active indoor source time, e)
apartment is a singlewell mixed zonewith instantaneousmixing, f)
the conditions, at the beginning of the active indoor source event,
have held long enough before that to reach equilibrium.

Criteria for selecting an active indoor source episode for source
strength calculations, adopted fromWallace et al. (2004) were: a) a
sharp increase in PNC above average background (no active source)
concentration level, b) no other reported activity at the time and a
smooth decay (indicating no other significant active indoor source),
c) a return to the initial (before the episode) concentration level
indicating no change in outdoor concentration. These criteria
limited active source episodes in the apartment, suitable for the
source strength calculations to seven. For the DCin calculation, the
difference between peak concentration for the given active source
episode and the initial background concentration were used. This
determined the maximum concentration change and allowed
estimation of average particle source strength for this period on the
basis of Equation (2).

Decay rates where determined for given particle size intervals
from the equation:
CðtÞ ¼ e�ðaþkÞtCðt�1Þ (3)

where C(t) and C(t � 1) are the indoor concentrations for given par-
ticle size interval at times t and t� 1. Decay rates are determined by
taking the natural logarithm of both sides of the Equation (3) and
regressing over time. The negative slope of the regression is a þ k,
i.e. it is a total decay rate due to exfiltration and deposition.
3. Results and discussion

3.1. PNC during occupancy and total monitoring periods in
residences

Characteristics of PNC in residences are summarised in Table 2.
Compared values comprise total monitoring period, occupancy,
non-occupancy time and outdoors. In the apartment the PNC dur-
ing occupancy time is higher than during total monitoring, differ-
ences between these two averaging periods comprise 33% for
average and 58% for median PNC. In the houses HA and HB total
monitoring and occupancy are very similar, for both average and
median PNC values. The observed differences between the apart-
ment and both houses can be influenced by the following factors: a)
in the apartment vigorous cooking activities took place without use
of the kitchen extraction fan (due to noise disturbance) whereas in
both houses cooking activities were limited and the extraction fans
were used promptly; in case of house HA use of the kitchen
extraction system automatically activated bathroom extraction
systemwhich further increased EAR and removal of the particles b)
one level and open-space layout of the apartment (joined kitchen
and living room) influenced the spread of the particles during
cooking activities compared to enclosed kitchens in two- and
three-level houses HA and HB, respectively; c) candle burning,
known and significant contributor to particle loads indoors (Isaxon
et al., 2014; Bek€o et al., 2013) occurred only in the apartment.
Recent studies, conducted in relatively large amount of residences
in Denmark (56 residences, Bek€o et al., 2013) and Sweden (22
residences, Isaxon et al., 2014) report higher concentrations of PNC
during occupancy in comparison to total monitoring periods during
winter, which agrees with results obtained in the apartment. Bek€o
et al. (2013) reports occupancy time average and median concen-
tration 29% and 6% higher in comparison to total monitoring. Isaxon
et al. (2014) reports occupancy average concentration 18% higher
and median concentration 12% higher than total monitoring pe-
riods. Both studies (Isaxon et al., 2014; Bek€o et al., 2013) identified
candle burning and cooking activities as the main particle sources
contributing to observed PNC. Lack of candle burning in houses HA
and HB combined with less vigorous cooking activities compared to
the apartment may explain why higher PNC is observed during
occupancy time only in the apartment and not in houses HA and
HB.

Non-occupancy time consistently is characterised with lower
average and median values in comparison to occupancy periods in
the residences. The greatest difference in PNC between occupancy
and non-occupancy periods is seen in the apartment with non-
occupancy average 3000 particles cm�3 in comparison to
12 000 particles cm�3 during occupancy time. Higher concentra-
tions during occupancy in comparison to non-occupancy time are
not surprising as occupants’ presence and activities dictate occur-
rence of major indoor particle sources. PNC during total monitoring
period in the apartment (in particles cm�3: average 9000, STD
25 000, min 700 and max 183 000) are similar to the values re-
ported by Ogulei et al. (2006) for particles between 10 and 450 nm,
for a non-smoking townhouse in Boston as four months averages



Table 2
PNC (15e700 nm, SMPS measurements) characteristics for total monitoring period, occupancy, non-occupancy, and outdoors in studied residential indoor environments.

Average STDa Median Min Max Average number GMDb Average GSDc

(particles cm�3) (nm)

Apartment Total monitoring 9000 25 000 1200 700 246 000 82 2.1
Occupancy 12 000 30 000 1900 700 246 000 84 2.0
Non-occupancy 3000 3000 1900 700 28 000 79 2.1
Outdoorsd 3600 2500 3100 200 35 000 45 2.2

House HA Total monitoring 3000 5200 2200 600 120 000 66 2.2
Occupancy 3000 5500 2300 600 120 000 66 2.2
Non-occupancy 2000 700 1900 1000 5100 62 2.3
Outdoors 4100 4500 3900 1000 9800 60 2.2

House HB Total monitoring 2500 2700 1600 260 39 000 71 1.9
Occupancy 2600 2700 1500 260 39 000 72 1.9
Non-occupancy 2300 1500 1900 500 7000 69 1.8
Outdoorse 1500 600 1400 400 3300 82 2.5

a Standard deviation.
b Geometric mean diameter.
c Geometric standard deviation.
d Average for winter 2006/2007 at the roof level in Malm€o centre (Roldin et al., 2010).
e Average for house HB monitoring period from rural monitoring station in Vavihill (Kristensson et al., 2008), situated in the area of the house HB.
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(in particles cm�3: average 8100, STD 17 250, min 180 and max
308 000), but higher in comparison to both houses.

Outdoor concentrations for the apartment and house HB, pre-
sented in Table 2, were lower than indoors during total monitoring
periods and occupancy. Outdoor concentration for apartment and
house HB were not measured directly outside the sites but taken
from nearby monitoring stations (details in Materials and
Methods). In house HA outdoor concentrations are slightly higher
than during any other averaging period of indoor concentrations.
This most probably can be explained by a few factors: a) lack of
vigorous cooking activities with use of stove top or oven, as ma-
jority of cooking comprised food preparation with use of a micro-
wave; b) measurements took place on a ground floor while kitchen
is on second floor and major activities took place there; c) use of
occupant controlled kitchen extraction systemwhich automatically
activated bathroom extraction system, thus increasing EAR and
removal of the pollutants, d) in general higher AER (0.75 h�1) in
comparison to two other residences (below 0.3 h�1) which en-
hances particle removal but also can contribute to increased par-
ticle deposition on different indoor surfaces e) higher volume of the
house HA (by factor 2) in comparison to apartment and house HB,
allowing dispersion.
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Fig. 2. Average number size distributions in the house HA for different occupancy
periods, total monitoring and outside. Average number size distributions in the house
HB for total monitoring period and outside are given for comparison.
3.2. Number size distribution during occupancy and total
monitoring periods in residences

Average number size distribution in the apartment for occu-
pancy and total monitoring are given in Fig. 1, additionally non-
occupancy and periods with active and no sources are plotted.
Average PNC during active sources in the apartment is about 13
times higher than during no source period (18 000 and
1300 particles cm�3, respectively). Number size distribution during
total monitoring, occupancy and active sources is bi-modal with the
modes about 20 and 60 nm. Number size distribution is uni-modal
during non-occupancy and no source periods with modes about 80
and 100 nm, respectively. From Fig. 1 it can be seen that in the
apartment PNC is dominated by particles smaller than 300 nmwith
significant contribution of ultrafine particles (<100 nm). The oc-
cupancy time in the apartment accounted for about 70% of the total
sampling time. Out of the occupancy time 64% was during the
active source period. During active source period particles smaller
than 100 nm contributed to 77% of total PNC, while during no
source period their contribution accounted for 50%. Contribution of
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particles smaller than 300 nm to total PNC for active and no source
period was similar, accounting for 94 and 90%, respectively.

Morawska et al. (2003) measured average concentrations for
48 h in 15 houses in Brisbane. Their reported average concentration
value for active source period is comparable to this study 18 200
and 18 000 particles cm�3, respectively. However average outdoor
concentrations in Brisbane (10 900 particles cm�3) were higher in
comparison to the concentrations in Malm€o
(7000 particles cm�3,Roldin et al., 2010).

Average number size distribution in the houses HA and HB for
occupancy, non-occupancy, total monitoring periods are given in
Fig. 2. Number size distributions in house HA during occupancy and
total monitoring periods are very similar. It can clearly be seen that
all number size distributions in house HA display the same shape,
the outdoors size distribution is somehow wider than indoors and
the outdoors concentrations are higher. In all size distributions in
house HA mainly one mode about 50 nm is visible, although the
shapes of the curves indicate that there is a second mode below
measured size range with this instrument. Average number size
distribution in house HB is uni-modal with mode about 50 nm.
Only total monitoring period in house HB is presented as occupancy
averaging period number size distribution did not display any
significant difference.
3.3. PNC during occupancy and total monitoring periods in non-
residential indoor environments

In Table 3 PNC characteristics for studied non-residential indoor
environments are summarised during occupancy periods i.e.
teaching hours in both schools and opening hours in the super-
market and restaurant. The average PNCwere relatively low in non-
residential sites and ranged from 800 particles cm�3 in the
restaurant to 2800 particles cm�3 in the supermarket. PNC char-
acteristics during total measurements periods in the non-
residential sites (both schools, the supermarket and restaurant)
were very similar to presented occupancy periods, thus are not
presented here. It has to be noted that in case of non-residential
sites some misclassification of the data cannot be excluded, i.e.
presence of staff outside teaching and opening hours could have
occurred due to cleaning, food preparation (in the restaurant) or re-
stocking (in the supermarket).

In both schools during teaching hours average PNCwas between
1800 and 2000 (min 800, max 4000) particles cm�3. Recent studies,
summarised in a review by Morawska et al. (2013), report that in
schools average PNC range from 2000 to 81 000 particles cm�3.
Thus the average PNC values obtained in this study belong to lower
concentrations measured in schools.

Among the studied non-residential sites the highest average and
median value of 2800 and 2300 particles cm�3, respectively, was
observed in the supermarket, despite high AER (~10 h�1) and
supply of ventilation air with low particle loads (median 850, min
Table 3
Total submicron PNC (15e700 nm, SMPS measurements) for studied non-residential ind
supermarket and restaurant. The PNC during total monitoring periods, not presented he

Average STDa Median Min

(particles cm�3)

School SA 2000 600 1800 800
School SB 1800 800 1700 800
Supermarket 2800 1600 2300 700
Restaurant 800 500 700 200

a Standard deviation.
b Geometric mean diameter.
c Geometric standard deviation.
200, max 4000 particles cm�3). Possible explanation for observed
relatively high concentration is given in section “Number size dis-
tribution during occupancy and total monitoring periods in non-
residential sites”.

In the fast food restaurant (Table 3) the lowest among non-
residential sites, average and median PNC values (800 and
700 particles cm�3) were observed. PNC found inside mirrored the
concentrations measured in the supplied ventilation air with a
median value of 600 particles cm�3, ranging from 100 to
9000 particles cm�3. These low concentrations in the restaurant
can be explained by high AER in the dinning section, ventilation
systemwith good filtration efficiency (glass fibre F7) operating 24 h
per day and separate extraction systems in the kitchen where
grilling and frying took place. Levy et al. (2002) reported
140 000 particles cm�3 in a seating area of a mall food court in
Boston (measured with TSI P-Trak, range 20e1000 nm); no infor-
mation on AER or ventilation system was provided. These values
are much higher in comparison to measured concentrations in the
restaurant in this study. Higher AER and possibly lower intensity of
cooking (in comparison to Boston mall food court) could contribute
to it.

3.4. Number size distribution during occupancy and total
monitoring periods in non-residential indoor environments

Average number size distribution for studied non-residential
sites is presented in Fig. 3. In Fig. 3 apart from concentrations in
schools SA and SB during teaching hours, the measured
oor environments during teaching hours in both schools and opening hours in the
re, were similar to given occupancy periods.

Max Average number GMDb Average GSDc

(nm)

3400 96 2.0
4000 68 2.0
11 000 41 1.9
9100 52 2.4
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concentrations outdoors are also plotted. Number size distribution
in both schools as well as outdoors is uni-modal with modes about
90 nm in school SA and 60 nm in school SB. In naturally ventilated
school SB the average number size distribution as well as PNC
mirrored the outdoor ones. Whereas in mechanically ventilated
school SA the same shape of number size distribution is observed
with lower concentrations, which represents effect of particles
removal due to filtration in mechanical ventilation system. Simi-
larity of number size distribution measured inside and outside in
both schools could be explained due to: 1) lack of strong indoor
sources of submicrometer particles in schools (no cooking, candle
burning, tobacco smoking, etc.), and 2) a clear dependence of in-
door PNC in schools on outdoor concentrations influenced by traffic
related pollution as confirmed in published studies summarised by
Morawska et al. (2013).

Average particle number size distribution in the supermarket is
different in comparison to all non-residential sites presented in
Fig. 3. The mode appears at lower diameter (about 30 nm) and the
highest PNC (2800 particles cm�3) are seen compared to other non-
residential sites. In the supermarket AER was high (~10 h�1) and
particle concentrations in supplied ventilation air was low (median
850, min 200, max 4000 particles cm�3). The median geometric
mean diameter inside the supermarket was 41 nm which is about
20 nm smaller than in the supplied ventilation air, which indicates
an indoor source of particles. Presence of nucleation mode particles
(as seen in Fig. 3) is likely due to local emissions of terpenes (from
washing powders, cleaning products and air fresheners), which in
the presence of ozone from outdoors (supplied in ventilation air)
form particles due to gas-to-particle conversions (Wainman et al.,
2000; Weschler, 2003). Additional experiments were conducted
in the laboratory chamber to investigate the possibility of forma-
tion of nucleation mode particles from cleaning products (in un-
opened packaging e mimicking supermarket conditions) at low
ozone levels (16 ppb, matching the outdoor level during mea-
surements in supermarket). The results confirmed such a possi-
bility and are described in Wierzbicka et al. (2011).
3.5. Comparison of approximation of mass concentration
(photometer reading) during occupancy and total monitoring
periods

Photometer readings in the studied indoor environments are
summarised in Table 4. The highest average PM2.5 concentrations
were observed in the apartment 28 mg m�3 and the lowest in the
supermarket and restaurant 7 and 8 mg m�3, respectively. Consis-
tently average and median concentrations during occupancy time
Table 4
Approximation of PM2.5 mass concentrations (DustTrak readings) for different
averaging periods in studied indoor environments.

Average STDa Median Min Max

(ug m�3)

Apartment Total monitoring 28 41 18 5 403
Occupancy 36 51 21 8 403
Non-occupancy 17 18 13 5 171
Outdoors 19 12 18 61 2

School SA Total monitoring 21 10 19 7 47
Teaching hours 24 11 25 8 43

School SB Total monitoring 11 11 6 1 47
Teaching hours 13 13 8 2 47
Outdoors 9 6 9 1 34

Supermarket Opening hoursb 7 2 6 20 5
Restaurant Opening hoursb 8 1 8 14 2

a STD e standard deviation.
b Total monitoring periods were identical to opening hours values.
(teaching hours in schools) were higher than during total moni-
toring period in the apartment and both schools.

In the apartment the PM2.5 mass concentration approximation
was higher during occupancy time than during total monitoring
period by 29% for average and 17% for median values. It is worth
noting that relative comparison of photometer readings for
considered averaging periods eliminates uncertainty of absolute
reading values related to instrumental issues (described in Method
section). In the apartment measured average values outdoors were
lower than average concentration indoors both during occupancy
and total monitoring. The median outdoor concentration was the
same as total monitoring median (18 mg m�3). Median PM2.5 mass
concentration 18 mg m�3 during total monitoring period in the
apartment is within the range of values reported in other publi-
cations summarised in review by Morawska et al. (2013) i.e. be-
tween 8 and 33 mg m�3. When comparing reported PM2.5 mass
concentrations one has to bear in mind that frequently different
averaging periods as well as instrumentation and analytical
methods were used. Smoking residences were excluded as tobacco
smoking is a known major source of fine particles, which has been
reported to increase PM2.5 mass concentration by 58e130%
(Stranger et al., 2007; Breysse et al., 2005).

In Fig. 4 simultaneous indoor/outdoor PM2.5 photometer read-
ings in the apartment, are shown. Additionally plotted is outdoor
PM2.5, obtained from nearby monitoring point in city centre (as
described in Materials and Methods). In Fig. 4, typically for indoor
environments with active indoor sources, a sharp increase in par-
ticle concentration at the beginning of each indoor activity is
observed. When the activity is ceased, a slow decrease follows. The
decrease to background (no source) level in the apartment took up
to 12.5 h, which is expected as the AER is about 0.3 h�1. Similar
patterns, i.e. sharp increases due to indoor activities with slower
decrease, were observed in earlier studies (Afshari et al., 2005;
Morawska et al., 2003; Wallace, 2006) and are expected for the
low AER in naturally ventilated houses in winter time in northern
Europe. These sharp increases in particle concentration (expressed
both in mass and number concentration) are typical for occupancy
time as occupant activities dictate their occurrence. These sharp
increases, contributions from indoor sources, are clearly visible in
Fig. 4 and reach values up to 20 times higher in comparison to the
observed outdoor concentration. These short term peaks were
identified, as different types of cooking and candle burning. Short
term increases of PM2.5 due to different type of cooking between 2
and 100 times greater than background or outdoor concentrations
were reported by Abt et al. (2000), He et al. (2004), Morawska et al.
(2003) and Wallace et al. (2004). The very high maximum con-
centration of PM2.5 in the apartment in this study (403 mg m�3) was
due to cooking and can be compared to median peak concentration
values of 745, 735, 718 mg m�3 reported by He et al. (2004) due to
frying, cooking pizza and grilling, respectively.

In both schools the PM2.5 mass concentration approximation
was higher during teaching hours than during total monitoring
period (Table 4). On average the difference for both schools, be-
tween teaching hours and total monitoring, accounts to 16% for
average and 32% for median values. In both schools the average
values for total monitoring period (as presented in Table 4, i.e. 21
and 11 mg m�3 for SA and SB, respectively) are comparable to other
reportedmeasurements (summarised in review byMorawska et al.,
2013) which range from 2 to 95 mg m�3. In school SB median out-
door concentration (9 mgm�3) was higher thanmedian during total
monitoring and teaching hours (6 and 8 mg m�3, respectively).

In the fast food restaurant, the DustTrak inside measured PM1
mass concentration, with a median value of 8 mgm�3. The influence
of outdoor concentrations was not noticed. This indicates high
particle removal of the filters used in the ventilation. The authors of
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Fig. 4. Comparison of DustTrak readings indoors in the apartment and on the roof of the building together with PM2.5 mass concentration measured by TEOM at the monitoring
point at the roof level in Malm€o city centre (Roldin et al., 2010).
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this study did not find any reference values for PM1 concentrations
measured in restaurants. PM2.5 values given by Travers et al. (2004)
for 20 bars and restaurants after the smoking prohibition imple-
mented in 2003 in the USA are higher (24 mg m�3) than values
obtained in the restaurant in this study. Many reference values
were found for Chinese style of cooking but these were much
higher e.g. 312 mg m�3 in See and Balasubramanian (2006) and
1167 mg m�3 in Lee et al. (2001).

The authors did not find any reference values for PM2.5 mass
concentration measured in supermarkets at similar conditions.

3.6. Indoor sources

3.6.1. Identification of sources
In order to understand the difference between occupancy and

total monitoring periods indoor sources of particles were identified
from log books. The activities that significantly increased the PNC
consisted of cooking (frying sausages, onions, vegetables, chicken,
omelette, pizza in the oven), burning candles, burning incense,
peeling oranges and tangerines, plugging in an air freshener. Fig. 5
presents the number size distribution at peak concentrations from
different activities in the apartment. The highest peak contribution
was observed at the dinner party, with vigorous cooking followed
by seven candles burning. Observed peak concentrations are
influenced by air exchange rate, site volume and deposition rates.
This is why source strengths, which are independent of these var-
iables, are more suitable for comparisons and are presented below.

3.6.2. Source strengths
Source strengths for some activities were estimated on the basis

of measurements in the apartment and are summarised in Table 5,
together with peak concentration and decay rates for given size
intervals. Source strengths in house HA were reported in Hussein
et al. (2005). In house HB overlapping activities did not allow
identification of activity meeting the criteria described in the sec-
tion “Source strengths estimation”. Table 5 comprises only activ-
ities meeting the selection criteria. Estimated total source strengths
for cooking events range from 6.3 � 1011 to
1.7 � 1012 particles min�1, lowest for frying an omelette (no oil,
Teflon frying pan used) and highest for cooking (specified as
“cooking in activity log”). The highest contribution is observed from
ultrafine particles (15e100 nm), their source strengths range from
6.0 � 1011 to 1.3 � 1012 particles min�1, which accounts on average
for 84% of total generated submicron particles. Peeling tangerines
produced 3.9 � 1010 particles min�1, and ultrafine particles
accounted for 91%. Source strengths estimated by He et al. (2004) in
15 houses in Brisbane for cooking pizza, frying, cooking and grilling
range from 1.7 � 1011 to 5.7 � 1011 particles min�1. These are
slightly lower but comparable with our results. Values reported by
Wallace et al. (2004), 3.0 � 1012 particles min�1 from 44 cooking
episodes agree with our upper limit of obtained source strengths.
Wallace (2006) published source strengths per cooking event for
381 cooking events. Assuming average active cooking time lasting
20 min, recalculated source strengths for tea and toast, tortillas and
broiled fish were 2.5 � 1011, 2.0 � 1012 and
1.4 � 1012 particles min�1, and are comparable to the values ob-
tained in this study. Afshari et al. (2005) in a full-scale chamber
study reported source strength of 8.3 � 1011 particles min�1 for
frying meat, which agrees well with the values obtained here.
4. Conclusions

In the apartment and both schools PM2.5 mass concentration
(photometer readings) consistently showed higher average and
median concentrations during occupancy time (in schools teaching
hours) in comparison to total monitoring period. In the apartment
the occupancy time average PM2.5 mass concentration was 29%
higher than during total monitoring periods, while medianwas 17%
higher. On average the difference in both schools, between teaching
hours and total monitoring, accounts to 16% for average and 32% for
median values. The relative comparison of photometer readings
presented here eliminates uncertainty of absolute reading values
related to these instruments (described in Method section).

Results of the comparison of PNC in residences during occu-
pancy and total monitoring period were not consistent. In the
apartment average and median PNC were 33% and 58%, respec-
tively, higher during occupancy in comparison to total monitoring
period, which agrees with the results in recently published studies,
conducted in larger amount of residences in Scandinavia. Whereas
in houses HA and HB average andmedian PNCwere very similar for
the two averaging periods. General conclusions on the basis of
measurements performed in three residences cannot be drawn,
however the results confirm strong dependence on type and fre-
quency of indoor activities generating particles and site specificity
(e.g. building characteristics, volume, AER).
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In both schools PNC during teaching hours were very similar to
values during total measurement periods and were mainly influ-
enced by outdoor concentrations. This finding is consistent with
previous studies i.e. that in indoor environments, without strong
indoor sources of particles, observed indoor PNC values are mainly
influenced by outdoor concentrations that can be modified by used
filtration system and building characteristics.
Table 5
Source strengths estimations for some activities in the apartment.

Activity Size interval
(nm)

Decay ratea (a þ k)
(h�1)

Concentr
(particles

Cooking 15e50 1.1 24 2
50e100 0.8 38 4
100e300 0.5 18 2
300e700 0.5 250

total 83 3
Frying sausages 15e50 1.2 13 1

50e100 0.7 41 7
100e300 0.4 400
300e700 0.1 30

total 59 1
Veg wok 15e50 1.2 25 2

50e100 0.8 54 0
100e300 0.5 22 1
300e700 0.5 210

total 103 4
Peeling 1 kg of

tangerines
15e50 0.6 260
50e100 0.4 430
100e300 0.2 110
300e700 0.1 70

total 807
Frying omelette

(3 events average)
15e50 0.9 17 1
STDe (0.2)
50e100 0.6 10 5
STDe (0.1)
100e300 0.3 220
STDe (0.2)
300e700 0.1 20
STDe (0.1)

total 30 0
STDe (1

a Measured AER at low ventilation conditions equals 0.3 h�1.
b Geometric mean diameter.
c Geometric standard deviation.
d Time from initial background concentration (one measurement point preceding first
e Standard deviation.
The major differences observed between occupancy and total
monitoring periods in residences were due to indoor sources,
which can greatly elevate indoor particle levels for prolonged pe-
riods (up to 12.5 h after activity ceased), especially in residences
with low AER. Due to different types of cooking and candle burning
in the apartment short term peak mass concentrations (photom-
eter readings) were observed up to 400 mg m�3 and peak PNC up to
Peak Timed

(min)
Source strength
(particles min�1)

ation
cm�3)

Number GMD
(nm)b

GSDc

00 5.07Eþ11
00 7.70Eþ11
00 3.51Eþ11
0 4.69Eþ10
00 69 1.9 15 1.67Eþ12
00 3.39Eþ11
00 3.58Eþ11
0 8.37Eþ10
0 4.03Eþ09
00 58 1.8 12 7.85Eþ11
00 3.07Eþ11
00 6.10Eþ11
00 2.30Eþ11
0 2.16Eþ10
00 64 1.9 30 1.17Eþ12
0 1.36Eþ10
0 2.13Eþ10
0 3.58Eþ09

6.55Eþ07
0 61 1.8 59 3.85Eþ10
00 3.70Eþ11
(6900) (1.83Eþ11)
00 2.24Eþ11
(6200) (1.59Eþ11)
0 3.56Eþ10
(1300) (2.95Eþ10)
0 1.38Eþ09
(90) (1.32Eþ09)
00 45 1.8 15 6.31Eþ11
4 490) (3.64Eþ11)

observed concentration increase) until peak concentration was reached.
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246 000 particles cm�3 (about 20 and 35 times higher than the
average outdoor concentration, respectively).

In summary, to improve exposure assessment to particles,
crucial for studying health effects, only data from occupancy pe-
riods should be used. Non-occupancy periods, while useful for
studying influence of outdoor particles and establishing a baseline,
should not be included in the exposure assessment. Data from total
monitoring, as it includes non-occupancy periods, may underesti-
mate the concentrations for exposure assessment. Detail charac-
terisation of particles and better assessment of personal exposure
indoors is of interest for epidemiological and toxicological studies.
It can help in raising general awareness and guide development of
control strategies. The number size distributions reported here
could be also used for estimating lung deposited dose needed in
studying health effects.

The importance of an adequate ventilation system, capable of
removing and not allowing the accumulation of both particles and
gaseous emissions (not studied here) generated by indoor sources,
becomes apparent. This needs to be emphasised especially in the
light of efforts to make residential houses energy efficient, which is
frequently done at the expense of reduced AER. It is not possible to
regulate activities in private homes to reduce particle exposure.
However much can be done to enclose spaces and enhance
extraction and ventilation in locations where strong indoor sources
of particles occur, namely in the kitchen.
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