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Abstract. The subfield attack exploits the presence of a subfield to solve overstretched versions of
the NTRU assumption: norming the public key h down to a subfield may lead to an easier lattice
problem and any sufficiently good solution may be lifted to a short vector in the full NTRU-lattice.
This approach was originally sketched in a paper of Gentry and Szydlo at Eurocrypt’02 and there
also attributed to Jonsson, Nguyen and Stern. However, because it does not apply for small moduli
and hence NTRUEncrypt, it seems to have been forgotten. In this work, we resurrect this approach,
fill some gaps, analyze and generalize it to any subfields and apply it to more recent schemes. We
show that for significantly larger moduli —a case we call overstretched— the subfield attack is
applicable and asymptotically outperforms other known attacks.
This directly affects the asymptotic security of the bootstrappable homomorphic encryption schemes
LTV and YASHE which rely on a mildly overstretched NTRU assumption: the subfield lattice

attack runs in sub-exponential time 2O(λ/ log1/3 λ) invalidating the security claim of 2Θ(λ). The effect
is more dramatic on GGH-like Multilinear Maps: this attack can run in polynomial time without
encodings of zero nor the zero-testing parameter, yet requiring an additional quantum step to recover
the secret parameters exactly.
We also report on practical experiments. Running LLL in dimension 512 we obtain vectors that
would have otherwise required running BKZ with block-size 130 in dimension 8192. Finally, we
discuss concrete aspects of this attack, the condition on the modulus q to guarantee full immunity,
discuss countermeasures and propose open questions.

Keywords: Subfield lattice attack, overstretched NTRU, FHE, Graded Encoding Schemes.

1 Introduction

Lattice-based cryptography relies on the presumed hardness of lattice problems such as the
shortest vector problem (SVP) and its variants. For efficiency, many practical lattice-based
cryptosystems are based on assumptions on structured lattices such as the NTRU lattice.
Introduced by Hoffstein, Pipher and Silverman [HPS96,HPS98], the NTRU assumption states
that it is hard to find a short vector in the R-module

Λqh = {(x, y) ∈ R2 s.t. hx− y = 0 mod q}

with the promise that a very short solution —the private key— (f, g) exists. The ring R =
Z[X]/(P (X)) is a polynomial ring of rank n over Z, typically a circular convolution ring
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(P (X) = Xn − 1) or the ring of integers in a cyclotomic number field (P (X) = Φm(X) and
n = φ(m)).

Following the pioneer scheme NTRUencrypt [HPS98], the NTRU assumption has been
re-used in various cryptographic constructions such as signatures schemes [HHGP+03,DDLL13],
fully homomorphic encryption [LTV12,BLLN13] and a candidate construction for cryptographic
multi-linear maps [GGH13a,LSS14,ACLL15]. After two decades of cryptanalysis, the NTRU-
encrypt scheme remains essentially unbroken, and is one of the fastest candidates for the
public-key cryptosystems in the post-quantum era.

Coppersmith and Shamir [CS97] noticed that recovering a short enough vector, may it be
different from the actual secret key (f, g), may be sufficient for an attack and claimed that
the celebrated LLL algorithm of Lenstra, Lenstra and Lovász [LLL82] would lead to such an
attack. However, it turned out [HPS98] that for sufficiently large dimension n, a much stronger
lattice reduction is required and that the NTRUencrypt is asymptotically secure. Meanwhile,
parameters have been updated to take account for progress in lattice reduction algorithms and
potential quantum speed-ups [HPS+15].

Other types of attacks have been considered, such as Odlyzko’s meet-in-the-middle attack
described in [HSW06]. In practice, the best known algorithm for attacking NTRU lattices is
the combined lattice-reduction and meet-in-the-middle attack of Howgrave-Graham [HG07].
Asymptotically, a slightly sub-exponential attack against the ternary-NTRU problem was
proposed by Kirchner and Fouque [KF15], with a heuristic complexity 2Θ(n/ log log q), which is to
our knowledge the only sub-exponential attack when q is polynomial in n.

It is typically assumed that NTRU lattices are essentially as intractable as unstructured
lattices with similar parameters4, but without the structure of R-module.

In the present work, we consider the application of lattice reduction in a subfield to attack
the NTRU assumption for large moduli q. This subfield lattice attack is asymptotically faster
than the direct lattice attack as soon as q is super-polynomial, and may also be relevant for
polynomially-sized q. We call the problem5 considered in this work “overstretched NTRU” to
distinguish it from the original NTRU parameter choices, which remain secure.

Asymptotics. The subfield attack leads to solving overstreched NTRU instances in time complexity
poly(n) · 2Θ(β) with β/ log β = Θ

(
n log n/ log2 q

)
when ever the relative degree parameter

r = Θ(log q/ log n) is greater than 1. In comparison, the direct lattice attack required setting
β/ log β = Θ (n/ log q).

We are mostly concerned with overstretched NTRU assumptions when q is super-polynomial
in n, in which case the best known attacks are already sub-exponential in n. For cryptographic
relevance, we will therefore state all our asymptotics in terms of what was previously thought
as the security parameter λ: given q = q(λ) we constrain n = n(λ) so that the previously
best known attack requires exponential time 2Θ(λ). In this cryptographic metric, the subfield
lattice attack is sub-exponential as soon as q is super-polynomial, and gets polynomial for larger
parameters q = 2Θ̃(λ) = 2Θ̃(

√
n).

Our contribution. In this work, we resurrect6 the subfield lattice attack sketched in [GS02, Sec.
6], attributed to Gentry, Szydlo, Jonsson, Nguyen and Stern. It consists of norming down the
secret key to a subfield, running lattice reduction in the subfield to solve a smaller, potentially
easier lattice problem and lifting the solution back to the full field.

4 Volume, dimension and length of unusually short vectors.
5 The NTRU problem has also been recently been referred to as DSPR (Decisional Small Polynomial Ratio), but

we prefer its historical name for fair attribution of this invention.
6 A preliminary version of this work qualified the attack considered in this work as new. We are grateful to John

Schanck for pointing us to this prior art.
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While the original sketch [GS02] only considered the maximal real subfield, we naturally
generalize it to any subfield. We also spell out a different lifting step from arbitrary subfields
and prove it applicable even if only an approximation of the normed-down key is found.

We then show that this algorithm solves the overstretched NTRU problem in sub-exponential
time when the modulus q is quasi-polynomial in the security parameter λ and in polynomial
time when the modulus q is super-exponential in λ (equivalently, q = 2Θ̃(

√
n)). Applying this

algorithm, we show that it gives a subexponential attack on parameter choices for NTRU-based
FHE schemes [LTV12,BLLN13] which were believed secure previously. We also show that this
algorithm enables new attacks on GGH-like graded encoding schemes [GGH13a,LSS14,ACLL15].
These attacks lead to subexponential classical and polynomial-time quantum attacks on GGH-like
constructions but do not require encodings of zero nor do they use the zero-testing parameter in
contrast to previous work [HJ15].

We also report on experimental results for the subfield lattice attack which show that the
attack is meaningful in practice. Using LLL in dimension 512 we have obtained vectors that
would have required running BKZ with block-size about 130 in dimension 8192.

Related work. As mentioned above, a variant of the attack considered in this work was sketched
in [GS02]. Moreover, the Gentry-Szydlo algorithm from the same work, which allows to reconstruct
an element a given the ideal (a) as well as the Gram element aā, i.e. the norm NK/K+(a) of
a relatively to the real subfield, can be seen as a subfield attack. It lead to an attack of the
NSS scheme [HPS01] in which the Gram element aā was leaked as the covariance of a certain
function of the signatures. The Gentry-Szydlo algorithm was recently revisited [LS14].

This attack is very similar in spirit to an attack of Gentry [Gen01] against the NTRU-
composite assumption which tackles NTRU problems over rings R that can be written as
direct products R ' R1 × R2. More specifically [Gen01] targets circulant convolution rings
Z[X]/(Xn−1) ' Z[X]/(Xn1−1)×Z[X]/(Xn2−1) where n = n1n2. Under such condition, there
exists a projection π : R → R1 that is a ring homomorphism, and he showed that this projection
could only increase the Euclidean length of secret polynomials by a factor

√
n2. This makes this

attack very powerful (even when the modulus q is quite small). Because this projection is a ring
homomorphism, this approach is not limited to NTRU and would also apply to Ring-SIS or
Ring-LWE.

In some sense, the line of work by Lauter et al. [ELOS15,EHL14,CLS15] against skewed7

variants of Ring-LWE falls in this framework, with a direct factorization of the rings R modulo
q: (R/qR) ' (R1/qR1)× (R2/qR2). As already noted in [Gen01], this requires the —seemingly
sporadic— property that the projection map πq : (R/qR)→ (R1/qR1) induces only a manage-
able geometric distortion. Similar ideas are being explored to attack schemes based on certain
quasi-cyclic binary codes in work [Loi14,LJ14,HT15].

In comparison, this work tackles NTRU when the ring R equals OK (the ring of integer
of a number field K) and therefore cannot be a direct product; and when K admits proper
subfields. Due to the aforementioned attack of [Gen01], direct product rings are now avoided for
lattice-based cryptography, and the typical choice is to use the ring of integers of a cyclotomic
number field of the form R = OQ(ωm) = Z[ωm]. This setting allows to argue worst-case hardness
of certain problems (Ring-SIS [Mic02], Ideal-LWE [SSTX09], later improved and renamed to
Ring-LWE [LPR10]). Yet all those number fields admit proper subfields (at least, the maximal
real subfield). Instead of using a projection map π, this attack exploits a relative norm map
NK/L : OK → OL, which is only a multiplicative map. This induces a significant yet manageable

7 It was recently shown that these attacks were in fact made possible by an improper choice of a very skewed
error distributions leading to several noise-free linear equations [CIV16,Pei16].
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blow-up on the Euclidean length of secret polynomials and requires a large modulus q. This
seems to also limit this attack to the NTRU setting.

Our work is also strongly inspired by the the logarithm-subfield strategy of Bernstein [Ber14],
which anticipated other works towards a logarithm attack [CGS14,CDPR16]. While the presence
of subfields was in the end not necessary for the recovery of short generators of principal ideals
in cyclotomic rings, we show in this work that, indeed, the presence of proper subfields can be
exploited in other specific set-ups.

Concurrently and independently to this work, Cheon, Jeong and Lee also investigated subfield
attacks on GGH-like graded encoding schemes in work [CJL16]. The general approach is very
similar to the one adopted in this work. In [CJL16], however, the trace map is utilised instead of
the norm and the result is only presented for the case of powers-of-two cyclotomic rings. Despite
using the trace map —which is linear— they obtain a growth of the secret that is similar to
ours: multiplicative. For example, when the relative degree of K over L is r = 2, the trace map
TrK/L sends g/f to g/f + ḡ/f̄ = (gf̄ + ḡf)/ff̄ where ·̄ denotes the adequate automorphism.
For comparison, the norm NK/L sends g/f to gḡ/f f̄ . Using the norm map is therefore slightly
better when both f, g have the same size (the numerator is smaller by a factor ≈

√
r); but

the trace map could be very advantageous when g � f . Furthermore, Cheon, Jeong and Lee
achieve better results for GGH-like graded encoding schemes by making use of the zero-testing
parameter which leads to a polynomial-time classical attack for large levels of multilinearity κ.

Outline. Section 2 gives preliminaries on the geometry of NTRU lattices and a brief introduction
of the lattice reduction algorithms. Section 3 then presents the subfield lattice attack with its
asymptotic performance analyzed in Subsection 3.4. In Section 4, we apply this attack to the
FHE and MLM constructions proposed in recent literature. In Section 5, we report experimental
results for the subfield lattice attack. Finally, Section 6 presents the conclusions and suggests
directions for future research.

Acknowledgments. We are grateful to Alice Silverberg, and to the participant of the Conference
on Mathematics of Cryptography for enlightening talks and discussions. We thank Dan J.
Bernstein, Ronald Cramer, Jeffrey Hoffstein, Hendrik W. Lenstra, John Schanck and Damien
Stehlé for helpful discussions and comments.

We thank the PSMN (Pôle Scientifique de Modélisation Numérique, Lyon, France) for
providing computing facilities.

2 Preliminaries

Vectors are presented in row vectors. The notation [ · ]q denotes reduction modulo an integer q.

2.1 Number fields and subfields

We assume some familiarity with basic algebraic number theory. The reader may refer to [Sam70]
for an introduction on the topic.

Let K be a number field of degree n = [K : Q] over Q, and assume K is a Galois extension of
Q with the Galois group G. The fundamental theorem of Galois Theory states an one-to-one
correspondence between the subgroups G′ of G and the subfields L of K with G′ being the
subgroup of G fixing L. Let therefore L be a subfield of K and G′ be the subgroup of G fixing L,
and denote n′ = [L : Q], r = [K : L] (so r = n/n′). The number fields K, L and therefore the
degrees n, n′ and relative degree r are fixed in the rest of this work.
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The relative norm NK/L : K → L (resp. relative trace TrK/L : K → L) is a multiplicative
(resp. an additive) map defined by

NK/L : a 7→
∏
ψ∈G′

ψ(a), resp. TrK/L : a 7→
∑
ψ∈G′

ψ(a). (1)

The canonical inclusion L ⊂ K will be written explicitly as L : L→ K. The ring of integers of K
and L are denoted by OK and OL.

A number field of degree n admits n embeddings –i.e. field morphisms– to the complex
numbers. Writing K = Q(X)/(P (X)) for some monic irreducible polynomial P , and letting
α1, . . . , αn ∈ C be the distinct complex roots of P , each embedding ei : K → C consists of
evaluating a ∈ K at a root αi, formally ei : a 7→ a(αi). The Galois group acts by permutation on
the set of embeddings.

Cyclotomic Number Field. We denote by ωm an arbitrary primitive m-th root of unity. For
cryptanalytic purposes, we are mostly interested in the case when K = Q(ωm) is the m-th
cyclotomic number field; But we may also want to instantiate the attack for subfields L of K
that are not necessarily cyclotomic number fields.

The number field L = Q(ωm) has degree n = φ(m), and has a Galois group isomorphic to
Z∗m: explicitly i ∈ Z∗m corresponds to the automorphism ψi : ωm 7→ ωim. Any number field Q(ωm′)
for m′|m is a subfield of Q(ωm), but there are other proper subfields. In particular, the maximal
real subfield Q(ωm + ω̄m) is a proper subfield of degree n/2, and more generally, K = Q(ωm)
admits a subfield of degree n′ for any divisor n′|n.8

We recall (see [Was97], Theorem 2.6) that the ring of integers OK of K = Q(ωm) is exactly
Z[ωm].

2.2 Coprimality in OL

To argue below that we can lift solutions in the subfield to the full field, we rely on two randomly
chosen elements in OL being coprime. We use density results to estimate such probability. The
density of coprime pairs of ideals [Sit10] and elements [FM14] in OL is 1/ζL(2) where ζL denotes
the Dedekind zeta function over K.

We consider ζL for cyclotomic number fields K = Q(ωm) where m = pk for some prime p.
The next lemma shows that limk→∞ ζL(s) = 1/(1− p−s) for real s > 3/2.

Lemma 1. Let L be a cyclotomic number field Q(ωm′) for m′ = pk. Then for any real s > 3/2
we have

lim
k→∞

ζL(s) = 1/(1− p−s).

In particular limk→∞ ζL(2) = 4/3 for cyclotomic number fields of conductor m′ = 2k.

Proof. Dedekind zeta function is given by the following Euler product

ζK(s) =
∏
P⊆OL

1

1− (NL/Q(P ))−s
,

where P ⊆ OL ranges over all prime ideals.
The prime p ramifies completely in L: there exists a prime ideal I such that Ie = p. It is the

only prime ideal I of L containing (p), and it has norm NL/Q(I) = p. Hence the prime ideal I

8 For example, 7 is prime, so Q(ω7) admits no cyclotomic number fields as proper subfields, yet it admits two
proper subfields: Q(ω7 + ω̄7) of degree 3 and Q(ω7 + ω2

7 + ω4
7) of degree 2.
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contributes 1/(1− p−s) in the Euler product. We want to show the contribution of the product
of prime ideals J other than I converges to 1 as k →∞.

Taking the logarithm we want to show

lim
k→∞

log
(
(1− p−s)ζL(s)

)
= lim

k→∞

∑
J⊆OL
J 6⊇(p)

log

(
1

1− (NL/Q(J))−s

)
= 0. (2)

Each such prime ideal J of OL contains a prime ideal (q) that lies below. The primes q
splits as (q) =

∏tq
i=1 Ji where NL/Q(J) = qfq for all i. We know that q does not ramify since

q - ∆L = ±ppk−1(pk−k−1). Hence Ji are distinct prime ideals and tqfq = n′ = φ(m′). More
precisely, tq is the number of prime ideals above q and by Theorem 2.1.3 of [Was97], fq is
the order of q in the multiplicative group modulo m′: fq = ord(q, (Z/m′Z)∗). In particular
qfq = 1 mod m′ and qfq > m′. The LHS of Equation (2) can be re-written as

lim
k→∞

∑
q, q 6=p

log

(
1

1− q−fqs

)tq
.

Using Taylor expansion of logarithm, it is sufficient to show,

lim
k→∞

∑
q, q 6=p

tqq
−fqs = 0. (3)

We split the summation in Equation (3) into several parts and prove that they all converges to
zero.

– First, we consider those q <
√
m′. We use the inequalities tq ≤ n < m′ and qfq > m′:

lim
k→∞

∑
q<
√
m′

tqq
−fqs ≤ lim

k→∞

∑
q<
√
m′

m−s+1 ≤ lim
k→∞

m′−s+3/2 = 0.

Note that m′ →∞ as k →∞.
– Second, we consider those q >

√
m′ such that fq = 1. We note such primes q are exactly

the primes q ≡ 1 mod m′. We write q = `m+ 1 for some l ∈ Z+. We also use the inequality
tq = n < m′:

lim
k→∞

∑
q>
√
m′

q≡1 mod m′

tqq
−fqs ≤ lim

k→∞

∑
q>
√
m′

q≡1 mod m′

m′q−s ≤ lim
k→∞

∑
`

m′(`m′ + 1)−s

= lim
k→∞

m′1−s
∑
`

(`+
1

m′
)−s = 0.

– Third, we consider those q >
√
m′ such that fq ≥ 2. We use tq ≤ n < m.

0 ≤ lim
k→∞

∑
q>
√
m′

fq≥2

tqq
−fqs ≤ lim

k→∞

∑
q>
√
m′

fq≥2

m′q−2s ≤ lim
k→∞

m′
∫ ∞
√
m′−1

q−2sdq = 0.

Indeed, the integral factor is O(
√
m′
−2s+1

) = o(m′−1) for any s > 3/2.

Summing the three parts completes the proof. ut
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Further, we numerically approximated ζ−1L (2) for L = Q[x]/(xn + 1) for n = 128 and n = 256
by computing the first 222 terms of the Dirichlet series of the Dedekind zeta function for L and
then evaluated the truncated series at 2. In both cases we get a density ≈ 0.75.

We stress that our pairs f ′, g′ are random elements obtained as relative norms NK/L(f)
and NK/L(g) of random short f and g, and under the additional condition that f is invertible
modulo q. However, our experiments indicate that 3/4 is a good approximation of the actual
probability of coprimality. Additionally, it seems that this requirement is an artifact of our proof,
as experiments succeeded even when those elements had a common factor.

2.3 Euclidean geometry

The number field K (or L) is viewed as a Euclidean Q-vector space by endowing it with the
inner product

〈a, b〉 =
∑
e

e(a)ē(b) (4)

where e ranges over all the n (or n′) embeddings K→ C. This defines a Euclidean norm denoted
by ‖ · ‖. In addition to the Euclidean norm, we will make use of the operator norm | · | defined by:

|a| = sup
x∈K∗

‖ax‖/‖x‖. (5)

It is easy to check that the operator norm |a| of a equals to the maximal absolute complex
embedding of a:

|a| = max
e
|e(a)| (6)

where e ranges over all the embeddings e : K → C. We note that if ω ∈ K is a root of unity,
then |ω| = 1. The operator’s norm is sub-multiplicative: |ab| ≤ |a| |b|, and we have the inequality
|a| ≤ ‖a‖. The Euclidean norm and the operator norm are invariant under automorphisms
ψ : K 7→ K,

‖a‖ = ‖ψ(a)‖, |a| = |ψ(a)| (7)

since the group of automorphisms acts by permutation on the set of embeddings. One also
verifies that ‖L(a)‖2 = r‖a‖2 and |L(a)| = |a| for all a ∈ L. Additionally, the algebraic norm
can be bounded in term of geometric norms:

NK/Q(a) ≤ |a|n ≤ ‖a‖n. (8)

The inner product (and therefore the Euclidean norm) are extended in a coefficient-wise
manner to vectors of Kd: 〈(a1, . . . , ad), (b1, . . . , bd)〉 =

∑
〈ai, bi〉.

Definition 1. A distribution D over Kd is said to be isotropic of variance σ2 ≥ 0 if, for any
y ∈ Kd it hold that

Ex←D
[
〈x, y〉2

]
= σ2‖y‖2

where E[ · ] denotes the expectation of a random variable.

Remark. In most theoretical work, the distributions of secrets or errors are spherical discrete
Gaussian distribution over OK which are isotropic —up to negligible statistical distance. For
simplicity, some practically oriented work instead chose random ternary coefficients. In the
typical power-of-two case cyclotomic case, such distribution is isotropic of variance 2n/3. Yet,
for more general choices K = Q(ωm), in the worse case (when m is composed of many small
distinct prime factor), this may induce up to quasi-polynomial distortion nlog(n) (see [LPR10]).
Such choice of set-up should only marginally affect our asymptotic results.
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2.4 OK modules and lattices

To avoid confusion, we shall speak of the rank of OK-modules and of K-vectors-spaces when
K 6= Q, and restrict the term of dimension to Z-modules and Q-vector spaces.

The dimension dim(Λ) of a lattice Λ is the dimension over Q of the Q-vector space it spans9.
We recall that the minimal distance of a lattice Λ is defined as λ1(Λ) = minv∈Λ\{0} ‖v‖. Also, the
volume of a lattice Vol(Λ) is defined as the square root of the absolute determinant of the Gram

matrix of any basis {b1 . . . bdim(Λ)} of Λ Vol(Λ) =
√

det([〈bi, bj〉]i,j). For any set of Q-linearly

independent vectors {v1, . . . , vdim(Λ)} ⊂ Λ, we have the inequality:

Vol(Λ) ≤
∏
‖vi‖. (9)

The rank of an OK module M ⊂ Kd can be defined as the rank over K of the K vector-space
it spans, but it does not necessarily equal the size of a minimal set of OK-generators10. The
Euclidean vector space structure of Kd allows to view any discrete OK-module M ⊂ Kd as
a lattice. The discriminant ∆K of a number field relates to the volume of its ring of integers√
|∆K| = Vol(OK). More generally, we have the identity:

Vol(aOK) = NK/Q(a)
√
|∆K|. (10)

This gives rise to a lower bound on the volume OK-modules of rank 1 in term of its minimal
distance:

Lemma 2. Let M ⊂ Kd be a discrete OK-module of rank 1. It follows that

Vol(M) ≤ λ1(M)n
√
|∆K|.

Proof. Without loss of generality, we may assume that d = 1 (by constructing a K-linear isometry
ι : SpanK(M)→ K⊗QR). Let a ∈ K⊗QR be a shortest vector of M , we have M ⊃ aOK, therefore
Vol(M) ≤ Vol(aOK) = NK/Q(a)

√
|∆K|, and we conclude noting that NK/Q(a) ≤ ‖a‖n. ut

2.5 NTRU assumption

Let us first describe the NTRU problem as follows.

Definition 2 (NTRU problem, a.k.a. DSPR). The NTRU problem is defined by four param-
eters: a ring R (of rank n and endowed with an inner product), a modulus q, a distribution
D, and a target norm τ . Precisely, NTRU(R, q,D, τ) is the problem of, given h = [gf−1]q
(conditioned on f being invertible mod q) for f, g ← D, finding a vector (x, y) ∈ R2 such that
(x, y) 6= (0, 0) mod q and of Euclidean norm less than τ

√
2n in the lattice

Λqh = {(x, y) ∈ R2 s.t. hx− y = 0 mod q}. (11)

We may abuse notation and denote NTRU(R, q, σ, τ) for NTRU(R, q,D, τ) where D is any
reasonable isotropic distribution of variance σ2.

Note that NTRU(R, q, σ, σ) is essentially the problem of recovering the secret key (f, g).
Yet, in many cases, solving NTRU(R, q, σ, τ) for some τ > σ is enough to break NTRU-like
cryptosystems.

9 Or equivalently, the size of a minimal sets of Z-generators, since Z is a principal ideal domain.
10 Non-principal ideals of K being a counter-example.
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The NTRU lattice Λqh. The lattice Λqh defined by the instance h← NTRU(OK, q, σ, τ) has dimen-

sion 2n and volume Vol(R)2qn. Consequently, if h were to be uniformly random, the Gaussian

heuristic predicts that the shortest vectors of Λqh have norm Vol(R)1/n
√
nq/πe. Therefore,

whenever σ < Vol(R)1/n
√
q/2πe, the lattice Λqh admits an unusually short vector. This vector

is not formally a unique shortest vector: for example, if K = Q(ωm), R = OK, all rotations
(ωimf, ω

i
mg) of that vector have the same norm.

Target parameter τ for attacks. Because no solution would be expected if h was uniformly
random, note that solving h← NTRU(R, q, σ, τ) for τ < Vol(R)1/n

√
q/2πe already constitutes a

distinguishing attack on the NTRU problem. As we discuss in Section 4, solving NTRU for such
τ would break the FHE scheme based on NTRU from [LTV12] and typical parameter choices
for the scheme presented in [BLLN13].

2.6 Lattice reduction algorithms

Lattice reduction algorithms have been studied for many years in [LLL82,Sch87,GN08,HPS11].
From a theoretical perspective, one of the best lattice reduction algorithm is the slide reduction
algorithm from [GN08].

Theorem 1 ([GN08]). There is an algorithm that, given ε > 0, the basis B of a lattice L of
dimension d, and performing at most

poly(d, 1/ε,bitsize(B))

many operations and calls to an SVP oracle in dimension β, outputs a vector v ∈ L whose length
satisfies the following bounds:

– the approximation-factor bound:

‖v‖ ≤ ((1 + ε)γβ)
d−β
β−1 · λ1(L) (12)

where λ1(L) is the length of a shortest vector in L and γβ ≈ β is the β-dimensional Hermite
constant.

– the Hermite-factor bound:

‖v‖ ≤ ((1 + ε)γβ)
d−1
2β−2 ·Vol(L)1/d (13)

Alternatively, one may use the BKZ algorithm [Sch87] and its terminated variant [HPS11].
Similar to slide reduction, the terminated BKZ performs at most poly(d, 1/ε,bitsize(B)) many
operations and calls to an SVP oracle in dimension β; and outputs a vector v ∈ L whose
length has order βΘ(n/β) ·Vol(L)1/d. Using [Lov87, p. 25], the terminated BKZ also provides an
algorithm to find an approximated shortest vector of length βΘ(n/β) · λ1(L) in similar time.

It is well known [CN11] that in practice lattice reduction algorithms achieve much shorter
results and are more efficient, but the approximation and Hermite factors remain of the order of
βΘ(n/β) asymptotically, for a computational cost in poly(λ) · 2Θ(β). We will use such estimate in
the following analysis.

3 The subfield lattice attack

The subfield lattice attack works in three steps. First, we map the NTRU instance to the chosen
subfield, then we apply lattice reduction, and finally we lift the solution to the full field. We first
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describe the three steps of the attacks in Sections 3.1, 3.2 and 3.3. In Section 3.4, we then analyze
the asymptotic performances compared to direct reduction in the full field for cryptographically
relevant asymptotic parameters.

We are given an instance h ← NTRU(OK, q, σ, τ), and (f, g) ∈ OK is the associated secret.
We wish to recover a short vector of Λqh.

3.1 Norming down

We define f ′ = NK/L(f), g′ = NK/L(g), and h′ = NK/L(h). The subfield attack follows from the
following observation: (f ′, g′) is a vector of Λqh′ and depending on the parameters it may be an
unusually short one.

Lemma 3. Let f, g ∈ OK ⊗Q R be sampled from continuous spherical Gaussians of variance σ2.
For any constant c > 0, there exists a constant C, such that,

‖g′‖ ≤
(
σnC

)r
, ‖f ′‖ ≤

(
σnC

)r
, |f ′| ≤

(
σnC

)r
, |f ′−1| ≤

(
nC/σ

)r
except with probability O(n−c).

Proof. For all embeddings e : K 7→ C, it simultaneously holds that

σ/nC ≤ |e(f)| ≤ σnC (14)

except with polynomially small probability O(n−c). Once this is established, the conclusion
follows using the invariant |ψ(a)| = |a| since f ′ =

∏
ψ(f), where ψ ranges over r automorphisms

of K.
To prove inequality (14), note that for each embedding e, the <(e(f)) and =(e(f)) follow

a Gaussian distribution of parameter Θ(n)σ. Classical tails inequality gives the upper bound
|e(f)| ≤ σnC . For the lower bound, we remark that the probability density function of a Gaussian
of parameter Θ(n)σ is bounded by 1/(Θ(n)σ). This implies that the probability that a sample
falls in the range 1

Θ(n)σ [−ε, ε] is less than 2ε. It remains to choose ε = Θ(n−c−1) which gives the
conclusion by the union-bound. ut

In this work, we assume that Lemma 3 holds also for all reasonable distributions considered
in cryptographic constructions.

Heuristic 1 For any m and any f, g ∈ OK with reasonable isotropic distribution of variance
σ2, and any constant c > 0, there exists a constant C, such that,

‖g′‖ ≤
(
σnC

)r
, ‖f ′‖ ≤

(
σnC

)r
, |f ′| ≤

(
σnC

)r
, |f ′−1| ≤

(
nC/σ

)r
except with probability O(n−c).

3.2 Lattice reduction in the subfield

We now apply a lattice reduction algorithm with block-size β to the lattice Λqh′ , and according
to the approximation factor bound (12) we obtain a vector (x′, y′) ∈ Λqh′ of norm:

‖(x′, y′)‖ ≤ βΘ(2n′/β) · λ1(Λqh′) ≤ β
Θ(n/βr) · ‖(f ′, g′)‖ (15)

≤ βΘ(n/βr) · (nσ)Θ(r). (16)

Next, we argue that if the vector (x′, y′) is short enough, then it must be an OK-multiple of
(f ′, g′). In turn, this will allow us to lift (x′, y′) to a short vector in the full lattice Λqh.
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Theorem 2. Let f ′, g′ ∈ OL be such that 〈f ′〉 and 〈g′〉 are coprime ideals and that h′f ′ =
g′ mod qOL for some h′ ∈ OL. If (x′, y′) ∈ Λqh′ has length satisfying

‖(x′, y′)‖ < q

‖(f ′, g′)‖
(17)

then (x′, y′) = v(f ′, g′) for some v ∈ OL.

Proof. We first prove that that B = {(f ′, g′), (F ′, G′)} is a basis of the OL-module Λqh′ for some
(F ′, G′) ∈ O2

L. The argument is adapted from [HHGP+03], Section 4.1. By coprimality, there
exists (F ′, G′) such that f ′G′ − g′F ′ = q ∈ OL. We note that:

f ′(F ′, G′)− F ′(f ′, g′) = (0, q);

g′(F ′, G′)−G′(f ′, g′) = (−q, 0);

[f ′−1]q(f
′, g′) = (1, h′) mod q.

That is, the module M generated by B contains qO2
L and (1, h′): we have proved that Λqh′ ⊂M .

Because detL(B) = f ′G′−g′F ′ = q = detL({(1, h′), (0, q)}) we have Vol(M) = |∆L|qn
′

= Vol(Λqh′)
and therefore M = Λqh′ .

We denote Λ = (f ′, g′)OL and Λ∗ the projection of (F ′, G′)OL orthogonally to Λ. Let s∗ of
length λ∗1 be a shortest vector of Λ∗. We will conclude using the fact that any vector of Λqh′ of
length less than λ∗1 must belong to the sublattice Λ. It remains to give an lower bound for λ∗1.

We will rely on the identity Vol(Λ) ·Vol(Λ∗) = Vol(Λqh′) = |∆L|qn
′
. By Lemma 2, we have

Vol(Λ) ≤ |∆L|1/2‖(f ′, g′)‖n
′

and Vol(Λ∗) ≤ |∆L|1/2‖s∗‖n
′
. (18)

We deduce that λ∗1 = ‖s∗‖ ≥ q/‖(f ′, g′)‖. Therefore, the hypothesis (17) ensures that ‖(x′, y′)‖ <
λ∗1, and we conclude that (x′, y′) ∈ Λ = (f ′, g′)OL. ut

We note that according to Heuristic 1, the length condition of Theorem 2 are satisfied
asymptotically when

βΘ(n/βr) · (nσ)Θ(r) ≤ q. (19)

The probability of satisfying the coprimality condition for random f ′, g′ is discussed in
Section 2.2, where we argue it to be larger than a constant. On the other hand, experiments (cf.
Section 5) show that the co-primality condition does not seems necessary in practice for the
subfield lattice attack to succeed.

The partial conclusion is that, one may recover non-trivial information about f and g —
namely, a small multiple of (f ′, g′) — by solving an NTRU instance in a subfield. Depending on
the parameters, this new problem is potentially easier since the dimension n′ = n/r of OL is
significantly smaller than the dimension 2n of the full lattice Λqh.

3.3 Lifting the short vector

It remains to lift the solution from the sub-ring OL to OK. Simply compute the vector (x, y)
where

x = L(x′) and y = L(y′) · h/L(h′) mod q (20)

where L : L→ K is the canonical inclusion map of L ⊂ K.
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Recall from Theorem 2 that (x′, y′) = v(f ′, g′). We set f̃ = L(f ′)/f , g̃ = L(g′)/g and
h̃ = L(h′)/h. Note that f̃ , g̃ and h̃ are integers of K. We rewrite

x = L(v) · f̃ · f mod q.

y = L(v) · L(g′)/h̃ = L(v) · gg̃/h̃ mod q

= L(v) · f̃ · g mod q.

That is, under condition (19) we have found a short multiple of (f, g):

(x, y) = u · (f, g) ∈ Λqh with u = L(v) · f̃ ∈ OK

‖(x, y)‖ ≤ |v| · |f |r−1 · ‖(f, g)‖
≤ |x′| · |f ′−1| · |f |r−1 · ‖(f, g)‖

≤ βΘ(n/βr) · (nσ)Θ(r).

The first inequality is established by writing f̃ as the product of r − 1 many ψ(f) where the ψ’s
are automorphisms of K. The second inequality decomposes v = x′/f ′, and the last follows from
Lemma 3 or Heuristic 1.

Not only we have found a short vector of Λqh, but also have the guarantee that it is an
OK-multiple of the secret key (f, g). This second property will prove useful to mount attacks on
the graded encoding schemes [GGH13a].

3.4 Asymptotic performance

For the subfield attack to be successful, we require

√
q = βΘ(2n/(β r)) · λ1(Λqh′) = βΘ(2n/(β r)) · nΘ(r)

when σ = poly(n). Hence, asymptotically we get

β

log β
= Θ

(
4n

r log q − 2 r2 log n

)
,

where we require r log q − 2 r2 log n > 0. Setting r = 1 roughly recovers the lattice attack in the
full field. Setting r = log q/(4 log n) minimizes the expression.

We illustrate the complexity for two extreme cases, where all parameters are expressed in
term of a security parameter λ, and are such that the previously best known attack required
time greater than 2λ. Additionally, it is assumed that K contains adequate subfields so that a
subfield L of the desired relative degree r exists. This condition is satisfied asymptotically for
the typical choice K = Q(ω2k).

In the first case, we set q = 2Θ̃(λ), and the subfield attack is polynomial in the security
parameter. For the second case, we show that as soon as q gets super-polynomial, the subfield
attack can be made sub-exponential.

Remark. Our analysis does not rule out that the attack may even be relevant even for polynomial
gaps q/σ: it could be that it remains exponential but with a better constant than the direct
attack.

Exponential and super-exponential q. We set:

n = Θ(λ2 log2 λ), q = exp(Θ(λ log2 λ)), σ = poly(λ) . (21)
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Complexity of the direct lattice attack. With such parameters, using 2λ operations, we argue
that one may not find any vector shorter than λ1(qOK) = q

√
n. Indeed, one may run lattice

reduction up to block-size β = Θ(λ). Either from approximation bound or Hermite bound, the
vector found should not be shorter than:

βΘ(n/β) = exp
(
Θ(λ2 log3(λ)/λ)

)
> λ1(qOK). (22)

We verify that having such choice of super-quadratic n makes the Kirchner-Fouque [KF15] attack
at least exponential in λ: exp(Θ(n/ log log q)) = exp(Θ(λ2 log2(λ)/ log λ)) > exp(Θ(λ)).

Complexity of the subfield attack. In contrast, the same parameters allow the subfield attack to
recover a vector of norm less than

√
q in polynomial time: set r = Θ(λ) and β = Θ(log λ). Then,

the vector found will have norm

βΘ(n/βr) · nΘ(r) = exp

(
Θ

(
λ2 log λ log log λ

λ log λ
+ λ log λ

))
(23)

= exp (Θ(λ log λ log log λ)) <
√
q. (24)

Similarly, setting n = Θ
(
λ2
)
, q = exp(Θ(λ)), β = Θ

(
log1+ε λ

)
, r = Θ (λ/ (log λ log log λ))

leads to a quasi-polynomial version of the subfield attack for exponential q.

Quasi-polynomial q. We set

n = Θ (λlogε λ log log (λ)) , q = exp(Θ(log1+ε λ)), σ = poly(λ) .

Complexity of the direct lattice attack. With such parameters, using 2λ operations, we argue
that one may not find any vector shorter than λ1(qOK) = q

√
n. Indeed, one may run lattice

reduction up to block-size β = Θ(λ). Either from approximation bound or Hermite bound, the
vector found should not be shorter than:

βΘ(n/β) = exp
(
Θ
(
log1+ε λ log log λ

))
> λ1(qOK). (25)

We verify that having such choice of super-linear n makes the Kirchner-Fouque [KF15] at-
tack at least exponential in λ: exp(Θ(n/ log log q)) = exp(Θ (λlogε λ log log λ/ log log1+ε λ)) >
exp(Θ(λ)).

Complexity of the subfield attack. In contrast, the same parameters allow the subfield attack to
recover a vector of norm less than

√
q in sub-exponential time exp(λ/ logε/3 λ): set r = Θ(log2ε/3 λ)

and β = Θ(λ/ logε/3 λ). Then, the vector found will have norm

βΘ(n/βr) · nΘ(r) = exp

(
Θ

(
log1+

4
3
ε(λ) log log(λ)

log
2
3
ε(λ)

+ log1+2/3 ε(λ)

))
= exp

(
Θ
(

log1+2/3 ε (λ) log log (λ)
))

<
√
q. (26)

4 Applications

We apply this attack to the FHE and MLM constructions from the literature and show that
it necessitates to increase parameters for these schemes to remain secure at level λ. In the
cryptographic context, we typically have K = Q(ωm), m a power of 2, and speak of the ring
R = Zq[X]/(Xn + 1) ' OK endowed with the cannonical inner product of its coefficients vector.
The ring isomorphism µ : R → OK is a scaled isometry: ‖µ(x)‖ =

√
n‖x‖. This normalization is

quite convenient, for example ‖1R‖ = 1.
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4.1 Fully Homomorphic Encryption

NTRU-like schemes are used to realise fully homomorphic encryption starting with the LTV
scheme from [LTV12]; the scheme was optimized and implemented in [DHS15].

LTV is motivated by [SS11] which shows that under certain choices of parameters the security
of an NTRU-like scheme can be reduced to security of Ring-LWE. That is, [SS11] shows that if
f and g have norms >

√
q · poly(λ), then h = [g/f ]q ∈ Zq[X]/(Xn + 1) — with n a power of

two — is statistically indistinguishable from a uniformly sampled element. Note that under this
choice of parameters the subfield lattice attack does not apply.

However, this choice of parameters rules out even performing one polynomial multiplication
and hence the schemes in [LTV12,DHS15] are based on an additional assumption that [g/f ]q is
computationally indistinguishable from random even when f and g are small. This assumption

— which essentially states that Decisional-NTRU is hard — is called the Decisional Small
Polynomial Ratio assumption (DSPR) in [LTV12]. Note that this work shows that DSPR does
not hold in the presence of subfields and an overstretched NTRU assumption.

LTV can evaluate circuits of depth L = O (nε/ log n) for q = 2n
ε

with ε ∈ (0, 1) and its
decryption circuit can be implemented in depth O(log log q + log n). This implies

log(nε+1) < nε/ log n,

log(nε+1) < log q/ log n,

i.e. that q must be super-polynomial in n to realise fully homomorphic encryption from LTV.

A scale-invariant variant of the scheme in [LTV12] called YASHE was proposed in [BLLN13].
This variant does not require the DSPR assumption by reducing the noise growth during
multiplication. This allows f and g to be sampled from a sufficiently wide Gaussian, such that
the reduction in [SS11] goes through. Sampling f and g this way allows to evaluate circuits of
depth L = O(log q/(log log q + log n)) [BLLN13, Theorem 2] for Z2 being the plaintext space.

On the other hand, setting the bounds on f, g to ‖f‖∞ = ‖g‖∞ = Bkey = 1, the plaintext
space to Z2 via t = 2, the multiplicative expansion factor of the ring to δ = n by assuming n is
a power of two and w = O(1), then the multiplicative expansion factor of YASHE is O

(
n2
)
. For

correctness, it is required that the noise be less than q/4. Hence, to evaluate a circuit of depth
L, YASHE requires q/4 > O

(
n2L

)
or L = O(log q/ log n) under this choice of parameters. As a

consequence, YASHE is usually instantiated with f and g very short, cf. [LN14].

Following [BV11, Lemma 4.5], Appendix H of [BLLN13] shows that YASHE is bootstrapable
if it can evaluat depth L = O (log log q + log n) circuits. For ‖f‖∞ = ‖g‖∞ = Bkey = 1 this
implies

log log q + log(n) < log q/ log n,

log(n log q) < log q/ log n,

i.e. q must be super-polynomial in n for YASHE to provide fully homomorphic encryption.

To establish a target size, recall that NTRU-like encryption of a binary message µ ∈ Z2 is
given by c = h · e1 + e2 + µbq/2c for random errors of variance ς2. To decrypt from a solution
(F,G) to the instance h← NTRU(R, q, σ, τ), simply compute Fc = G · e1 + F · e2 + F · µbq/2c.
The error term G · e1 +F · e2 will have entries of magnitudes ςτ

√
n which we require to be < q/2

to decrypt correctly. Hence, we require F,G < q/(2 ς
√
n). In [LTV12,BLLN13] like in other FHE

schemes, ς is chosen to be bounded by a very small, constant value.

In [CS15] several Ring-based FHE schemes are compared. For comparability amongst the
considered schemes and performance, the authors chose the coefficients of f, g from {−1, 0, 1}
with the additional guarantee that only 64 coefficients are non-zero in f or g. Then, to establish
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hardness they assume that an adversary who can find an element < q in a q-ary lattice with
dimension m and volume qn wins for all schemes considered. Now, to achieve security against
lattice attacks, the root Hermite factor δ0 in q = δm0 q

n/m should be small enough, where “small
enough” depends on which prediction for lattice reduction is used. In [DHS15] the same approach
is used to pick parameters, but for a slightly smaller target norm of q/4.

The attack presented in this work results in a subexponential attack in the security parameter
λ for LTV and YASHE, if L is sufficiently large to enable fully homomorphic encryption and if
n is chosen to be minimal such that a lattice attack on the full field does not succeed. Set

q = exp
(
Θ
(
(ε+ 1) log2 n

))
to satisfy correctness. Now, to rule out lattice attacks on the full field set n = Θ

(
λ log λ log log2 λ

)
.

Hence, for β = λ we have

βΘ(n/β) >
√
q,

Θ
(
log2 λ log log2 λ

)
> Θ

(
log2 λ

)
.

For the subfield attack, pick β = Θ
(
λ/log1/3 λ

)
and r = Θ

(
log2/3 λ

)
and we get

βΘ(n/β r) · nΘ(r) <
√
q,

Θ
(

log
5
3 λ log log2 λ

)
< Θ

(
log2 λ

)
.

4.2 Graded Encoding Schemes

In [GGH13a] a candidate construction for graded encoding schemes approximating multilinear
maps was proposed. The GGH construction was improved in [LSS14] and implemented and
improved further in [ACLL15]. In these schemes, short elements mi ∈ Z[X]/(Xn+1) are encoded
as [(ri · g +mi)/z]q ∈ R/qR for some ri, g with norms of size poly(λ) and some random z. For
correctness, the latest improvements [ACLL15] require a modulus q = poly(λ)κ, where κ is
the multi-linearity level. The subfield attack is therefore applicable in sub-exponential time for
any κ = logε λ, according to Section 3.4, and would become polynomial for κ > Θ(λ log λ). In
practice, the fact that the constants in the exponent q = λΘ(κ) is quite large could make this
attack quite powerful even for small degrees of multi-linearity.

While initially these constructions permitted the inclusion of encodings of zero (mi = 0) to
achieve multilinear maps, it was shown that these encodings break security [HJ15]. Without
such encodings, the construction still serves as building-block for realizing Indistinguishability
Obfuscation [GGH+13b].

To estimate parameters, [ACLL15] proceeds as follows11. Given encodings x0 = [(r0 · g +m0)/z]q
and x1 = [(r1 · g +m1)/z]q for unknown m0,m1 6= 0 we may consider the NTRU lattice Λqh
where h = [x0/x1]q. This lattice contains a short vector (r0 · g +m0, r1 · g +m1). In [ACLL15]
all elements of norm ≈ ‖r0 · g + m0‖ = σ?1 are considered “interesting” and recovering any
such element is considered an attack. This is motivated by the fact that if an attacker recovers
r0 · g +m0 exactly, then it can recover z. This completely breaks the scheme.

The subfield lattice attack does not yield the vector (r0 ·g+m0, r1 ·g+m1) exactly but only a
relatively small multiple of it u(r0 · g+m0, r1 · g+m1). We provide two approaches to completely
break the scheme from this small multiple. The first approach consists of solving a principal
ideal problem and leads to a quantum polynomial-time and classical subexponential attack. The
second approach relies on a statistical leak using the Gentry-Szydlo algorithm [GS02,LS14], but

11 The attack is attributed to Steven Galbraith in [ACLL15].
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is just outside reach with our current tools [GGH13a]. This approach is arguably worrisome, and
the authors of [GGH13a] spent significant efforts to rule this approach out completely.

We remark that unlike previous cryptanalysis advances of multi-linear maps [HJ15] this
attack does not rely either on the zero testing parameter, neither on encodings of zero. Our
cryptanalytic result therefore impacts all applications of multilinear maps, from multi-party key
exchange to jigsaw puzzles and Indistinguishability Obfuscation [GGH+13b]. For completeness,
we note that the CLT construction [CLT13] of Graded Encoding Schemes is also subject to a
quantum polynomial-time attack, because it relies on the hardness of factoring large integers.

The principal ideal problem and short generator recovery. The problem of recovering
a short principal ideal generator from any generator received a lot of attention recently, and a
series of works has lead to subexponential classical and polynomial-time quantum attacks against
principal ideal lattices [EHKS14,CGS14,CDPR16,BS16]. Precisely, given the ideal I = 〈g〉, Biasse
and Song [BS16] showed how to recover an arbitrary generator ug of I in quantum polynomial
time, extending the recent breakthrough of Eisentrager et al. [EHKS14] on quantum algorithms
over large degree number fields. Such results were conjectured already in a note of Cambell et
al. [CGS14], where a classical polynomial time algorithm is also suggested to recover the original
g from ug (namely, LLL in the log-unit lattice). The correctness of a similar algorithm was
formally established using analytical number theory by Cramer et al. [CDPR16].

In combination with this subfield lattice attack, this directly implies a polynomial quantum
attack. Indeed, the subfield lattice attack allows to recover u(r0 · g + m0) for some relatively
short u. Repeating this attack several time, and obtaining u(r0 · g+m0) for various u eventually
leads to the reconstruction of the ideal 〈r0 · g+m0〉. Because r0 · g+m0 follows exactly a discrete
Gaussian distribution, the approach sketched above can be applied, and reveals r0 · g + m0

exactly, and therefore z.

In conclusion, for any degree of multi-linearity κ, the subfield attack can be complemented
with a quantum polynomial step to a complete break. Alternatively, when κ = O(λc) for any
c < 1/2, — leading according to the previous best known attacks to a choice of dimension

n = Θ̃(λ1+c)— the 2Õ(n2/3) algorithms of Biasse and Biasse and Fiecker [Bia14,BF14] combined
lead to a classical attack in time sub-exponential in λ.

The statistical attack. This attack consists in recovering uū and 〈u〉 and using the Gentry-
Szydlo algorithm [GS02,LS14] to recover u.

To recover 〈u〉, note that we are given u(a0, a1). We will assume that 〈a0〉, 〈a1〉 are coprime
with constant probability, cf. Section 2.2. Under this assumption, 〈u〉 can be recovered as
〈u〉 = 〈ua0〉+ 〈ua1〉.12

To recover more information on u, we can compute ua0 · [xi/x0]q = uai for other i > 1,
and the equation hold over R because u and ai are small. For i > 1, ai is a independent of u
and follows a spherical Gaussian of parameter σ. It follows that the variance of uai leaks uū:
E[uai · uai] = σ2uū.

Given polynomially many samples xi one can therefore recover uū up to a 1 + 1/poly(λ)
approximation factor. The original attack of Gentry-Szydlo algorithm [GS02,LS14] requires the
exact knowledge of uū that could be obtained by rounding when u has poly-sized coefficient.
However, the u provided by the subfield lattice attack is much larger. In [GGH13a] this algorithm

is revisited and extended to when uū is only known up to a 1 + (log n)−Θ(logn) approximation
factor.

12 Note that the subfield lattice attack may be tweaked to obtain a triplet u(a0, a1, a2) (or more) increasing the
probability to recover 〈u〉.
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In conclusion, with the current algorithmic tools this approach is asymptotically inapplicable
if we assume only a polynomial number of available samples, but only barely so. This raises
the question of how to improve the tolerance of the Gentry-Szydlo algorithm13. Yet, because
(log n)Θ(logn) is arguably not so large, it is unclear whether this approach is really infeasible in
practice.

We concur with the decision made in [GGH13a], to attempt to rule out such an attack by
design even if it is not yet known how to fully exploit it.

5 Experimental Verification

We report on the experiments we performed. As in the previous section, this report considers
the ring R = Zq[X]/(Xn + 1) ' OK for n a power of 2, and endowed with the cannonical inner
product of its coefficients vector: Euclidean lengths are scaled so that ‖1R‖ = 1.

We chose q to be the first prime greater than 2k for integers k in certain range, with the
additional constraint that the field of order q should have a 2n-th root of unity to allow the
application of the number theoretic transform (NTT).

5.1 Experiments of LLL on NTRU lattice (full field)

We empirically study the behavior of LLL on NTRU bases. We consider cyclotomic number field
with m = 256 and m = 512 in Table 1. We consider two types of lattice bases: the full lattice
Λ with bases {(1, h), (0, q)} and randomized bases for sublattices Λ1 generated by {(f, g)}. For
each set of parameters, we generate 10 random instances of (f, g, h). The figures in the Table 1
are the average value for the corresponding item over 10 instances.

The column log2 ‖(f, g)‖ denotes the logarithmic length for the vector (f, g). The column
log2 ‖v‖ denotes the logarithmic length of the vector v found by LLL. The column “raf” is the

approximation factor (‖v‖ / ‖(f, g)‖)1/m of the LLL for the full lattice Λ. The column log2 ‖w‖
denotes the logarithmic length of the vector w found by LLL in the sublattice Λ1. We also
compute the the root Hermite factor (rhf = (‖w‖ /Vol1/n(Λ1))1/n) for LLL for the sublattice Λ1.
The column Γ denotes (

√
m
2πe

√
q/ ‖f, g‖)1/m. Note that this seems to approximate the ability

of the LLL in NTRU: even though NTRU is not a uSVP problem, it seems that the value
(heuristically, the gap Γm) affects the success of recovering the shortest vector in LLL. For
example, LLL is unable to recover any vector of norm smaller than 7681 for the first row for
m = 256. Moreover, given randomized bases for the sublattice Λ1, we are able to recover a short
vector, which is seemingly determined by rhf.

5.2 Experiments of LLL on NTRU lattice (subfield)

In this subsection, we study the behavior of LLL on NTRU basis in the subfield. We consider
cyclotomic number fields with m = 512 in Table 2. We take r = 4 and hence the subfields
correspond to m′ = 128. For each set of parameters, we also consider 10 random instances of
(f, g, h). The figures in the Table 2 are the average value for the corresponding item over 10
instances. Note that we either have “all success” for the last column of Table 2 or “all failed” for
these instances.

We explain the notation in Table 2. Column log2 ‖(f, g)‖ denotes the logarithmic length for
the vector (f, g) in the full field; Column log2 ‖(f ′, g′)‖ denotes the logarithmic length of (f ′, g′)

13 Asymptotically, the natural idea of replacing LLL by slightly stronger lattice reduction does not seems to help,
but should help in practice. The quasi-polynomial factor relates to a number theoretic heuristic. See Section 7.6
of [GGH13a].
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Table 1: Experiments of LLL on NTRU lattice (full field).

m log2 q log2 ‖(f, g)‖ Γ log2 ‖v‖ raf log2 ‖w‖ rhf

m
=

2
5
6

12.91 3.70 1.013 12.91 1.025 7.23 1.020
13.39 3.70 1.013 7.89 1.011 7.10 1.020
14.13 3.70 1.015 7.33 1.010 7.23 1.020
15.15 3.70 1.016 7.31 1.010 7.12 1.020
16.00 3.69 1.017 7.30 1.010 7.13 1.020
20.00 3.71 1.023 7.32 1.010 7.25 1.020
32.00 3.72 1.039 7.27 1.010 7.24 1.020
64.00 3.71 1.085 7.35 1.010 7.12 1.020

m
=

5
1
2

13.59 4.18 1.007 13.59 1.013 10.48 1.018
15.21 4.19 1.008 15.21 1.015 10.87 1.018
16.00 4.16 1.009 16.00 1.016 10.87 1.018
18.04 4.22 1.010 18.04 1.019 10.78 1.018
19.00 4.20 1.011 19.00 1.020 10.76 1.018
20.00 4.21 1.011 20.00 1.022 10.78 1.018
32.00 4.21 1.019 11.73 1.010 10.83 1.018
48.00 4.23 1.031 11.71 1.010 10.81 1.018
64.00 4.20 1.042 11.66 1.010 10.79 1.018

which corresponds to the normed-down vector of (f, g) in the subfield. The column Γ ′ denotes

(
√

m′

2πe

√
q/ ‖f ′, g′‖)1/m′ . Note that we do not know if (f ′, g′) is the shortest vector in the subfield

lattice; in fact, it happens in experiments that it is not the shortest vector. Hence we do not
consider the root approximation factor in the subfield. Instead, we check if the found vector v′

(whose length is recorded in column log2 ‖v′‖) lies in the sublattice Λ1 generated by (f ′, g′). This
is recorded in the last column.

Table 2: Experiments of LLL on NTRU lattice (subfield).

log2 q log2 ‖(f, g)‖ log2 ‖(f ′, g′)‖ Γ ′ log2 ‖v′‖ v′ ∈ Λ′1

m
=

5
1
2
,
r

=
4

20.00 4.21 15.26 0.979 13.41 No
24.00 4.21 15.04 0.991 15.59 No
28.00 4.22 15.05 1.002 17.47 No
30.00 4.21 15.34 1.006 18.52 No
31.00 4.22 15.50 1.008 19.26 No
32.00 4.21 14.97 1.014 15.93 Yes
40.00 4.23 15.70 1.032 16.04 Yes
64.00 4.18 15.34 1.103 15.87 Yes

As a summary, it seems that the size of modulus q determines the success of our algorithm
which follows our previous analysis. Experimental results show that: if q is large enough (such
that the gap factor Γ and Γ ′ is large enough), and the normed-down vectors ‖(f ′, g′)‖ is � √q,
then we should be able to recover a short vector which is a multiple of (f ′, g′) in the subfield
lattice (provided a good lattice reduction algorithm).
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5.3 Experiments on the subfield attack

Finally, we implement our subfield attack in Sage [Dev15] and provide some experimental result
in this subsection. Our experimental results are summarized in Tables 4, 5 and 6, corresponding
to parameter sets (n, n′) = (211, 27), (n, n′) = (211, 28) and (n, n′) = (212, 28) respectively. The
notation used in these experiments tables is explained in Table 3.

In each case, the secret (f, g) was chosen as a uniform ternary vector, which, in the power of
two case is an isotropic distribution of variance σ2 = 2/3. There are two trials for each set of
parameters. We used LLL14 for the lattice reduction step in the subfield case. For comparison,
we also provide the prediction of the required BKZ block-size for a full field attack (ffa).

Table 3: Explanation of reported parameters.

Instance blog2 qc Modulus bitsize.
log2 ‖(f ′, g′)‖ Euclidean length of the secret in the subfield.

LLL log2 ‖(x′, y′)‖ Euclidean length of LLL’s output in the subfield.

in the α Tentative root approximation factor
(
‖(x′,y′)‖
‖(f ′,g′)‖

)1/2n′

.

subfield ∃v? Do we have (x′, y′) = v(f ′, g′) for some v ∈ OL?

Lifted log2 ‖(x, y)‖ Euclidean length of vector found by lifting to the full field.

solution Success Is the attack successful, i.e. do we have ‖(x, y)‖ < q3/4?

BKZ in the δ (ffa) Root Hermite factor required for the ffa, with target length q.
full field β (ffa) Block size to reach root Hermite factor δ.

Remark. In several cases, the value v such that (x′, y′) = v(f ′, g′) exists in L, but is only a half
integer: 2v ∈ OL, yet v 6∈ OL. Those exceptions are marked with a asterisk (Yes∗) in the “∃v?”
column. Those exceptions happened only when both NK/Q(f ′) and NK/Q(g′) where even: the
coprimality conditions of Theorem 2 was not satisfied, precisely, both norms had 2 as a common
factor, and therefore 〈1 + ω2n′〉 as a common factor15. Note that this nevertheless lead to a
successful lift without any modification to the algorithm.

Plots of GSO vectors. Since we apply the LLL algorithm on the subfield lattice formed by
B′ = {(1, h′), (0, q)}. We plot the log2(‖b∗i ‖) for the basis B′ of the subfield lattice, where the b∗i ’s
are the Gram-Schmidt orthogonalized vectors of B′. We also plot log2(‖b∗i ‖) for the LLL-reduced
basis of B′. For these plots, we used two examples from Table 6: the left subfigure is from the
first trial of dlog2 qe = 185 in Table 6; the right subfigure is from the first trial of dlog2 qe = 190
in Table 6. Note that the right subfigure successfully recovers the secret while the left subfigure
does not.

6 Conclusions

Practicality of the attack. The largest instance we broke in practice is for the set of parameter
n = 212 and q ≈ 2190. Choosing a relative degree r = 16, the attack required to run LLL in dimen-
sion 512, which took about 120 hours, single-threaded, using Sage [Dev15] and Fplll [ABC+].

14 More precisely, we used Fplll [ABC+] packaged in Sage [Dev15].
15 The prime 2 totally ramifies in L = Q(ω2t): 〈1 + ω2n′〉n

′
= 〈2〉.
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Fig. 1: Plots of log2(‖b∗i ‖) for the subfield lattice B′ = {(1, h′), (0, q)} and log2(‖b∗i ‖) for the
LLL-reduced basis of B′.

The direct, full field lattice reduction attack, according to root-Hermite-factor based predic-
tions [CN11], would have required running BKZ in block-size ≈ 130, and in dimension 8192,
which is hardly feasible with the current state-of-the art [CN11] (requiring more than 270 CPU
cycles). We conclude that the subfield attack proposed in this work is not only theoretical but
also practical.

Obstructions to concrete predictions. We are currently unable to predict precisely how a given set
of parameters would be affected, for example to predict the power of this attack against concrete
parameter choices of NTRU-based FHE [LTV12,BLLN13] and Multilinear Maps [GGH13a].

There are two issues for those predictions. The first issue is that we make use of LLL/BKZ
in the approximation-factor regime, not in the Hermite-factor regime. While the behavior of
LLL/BKZ is quite well modeled in the latter regime, we are not aware of precise models for
the former for NTRU lattices. Unlike the Hermite-factor regime, this case could very well be
influenced by the presence of many short vectors rather than just a few.

The second issue is that we do not know the actual size of the shortest vector of Λqh′ :
all we know is that it is no larger than (f ′, g′). In several cases (Table 4) we found vectors
(x′, y′) = v(f ′, g′) that were actually shorter than (f ′, g′)— the tentative root-approximation
factor α is less than 1. One may expect that (f ′, g′) may still be (or close to) the shortest vector
for small relative degree r as it is the shortest with high probability in the full field (i.e. when
r = 1).

Immunity of NTRU encryption and BLISS signature schemes. If q is small enough, then the
attacks should become inapplicable, even with the smallest possible relative dimension r = 2.
Precisely, if (f ′, g′) is not an unusually short vector of Λqh′ , then there is little hope that any
lattice reduction strategy would lead to information on this vector. Quantitatively, this perfect
immunity happens when ‖(f ′, g′)‖ ≈

√
2 · σ2 · n′ >

√
n′q/πe. This was the case of the old

parameter of NTRU as discussed in [Gen01], which lead this attack being discarded. This is not
the case of all the parameters of NTRUencrypt [HPS+15] and Bliss [DDLL13], for which
(f ′, g′) is sometime unusually short vector, but not by a very large factor. Numerical values are
given in Table 7.
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Table 7: Vulnerability factor for some parameters of NTRUencrypt [HPS+15] and
Bliss [DDLL13].

Scheme n q σ
√
n′q/πe / (

√
2σ2n′) = F

NTRU-743 743 2048 0.82 298.7 / 349.8 = 0.85
NTRU-401 401 2048 0.82 219.6 / 189.5 = 1.16
BLISS-I 512 12289 0.55 607.0 / 108.6 = 5.59
BLISS-IV 512 12289 0.83 607.0 / 249.8 = 2.43

When the vulnerability factor F is less then 1, the parameters achieve perfect immunity.
When F is greater than 1, the subfield attack consist informally of solving “unusual-SVP” in
dimension 2n′ = n, where the unusually short solutions are a factor F shorter than predicted by
the Gaussian Heuristic.

According to this table, NTRU-743 should be perfectly immune to the subfield lattice attacks.
For other parameters, it seems likely, despite imperfect immunity, that the subfield lattice attack
will be more costly than the full attack, but calls for further study, especially for BLISS-I.

Note that the perfect immunity to this attack is achieved asymptotically around σ ≈ Θ(q1/4),
parameter for which h does not have enough entropy to be statistically close to random. For
comparison, it was shown that for σ = ω(q1/2), h is statistically close to uniform [SS11]. We
note that σ > Θ(q1/4) could provide enough entropy for the normed-down public key h′ to be
almost uniform. It would be interesting to see if the proof of [SS11] can be adapted to h′.

Recommendations. Even if credible predictions were to be made, we strongly discourage basing
a cryptographic scheme on a set-up to which this attack is applicable. Indeed, it is quite likely
that the performance of the attack may be improved in several ways. For example, after having
found several subfield solutions (x′, y′) = v(f ′, g′), it is possible to run a lattice reduction
algorithm in the lattice (f ′, g′) · OL of dimension n′ rather than 2n′ to obtain significantly
shorter vectors. Additionally, the lifting step may also be improved in the case where OL is a
real subfield using the Gentry-Syzdlo algorithm [GS02,LS14] to obtain shorter vector in the
full field (i.e. recovering x from NK/L(x)). More generally, one may recover x from NK/L(x)
even when L isn’t the real subfield of K: assuming (x) is prime, it can be recovered as a
factor of NK/L(x), which then leads to x via a short generator recovery; as mentioned before,
both steps are now known to be classically sub-exponential or even polynomial for quantum
computers [Bia14,EHKS14,CGS14,BS16,CDPR16].

Evaluating concrete security against regular lattice attacks is already a difficult exercise, and
leaving open additional algebraic and statistical attack opportunities will only make security
assessment intractable. We therefore recommend that this set-up —NTRU assumption, presence
of subfields, large modulus— be considered insecure.

Designing Immune Rings. We believe that our work further motivates the design and the study
of number fields without subfields to fit for the lattice-based cryptographic purposes, as already
recommended in [Ber14]. Even for assumptions that are not directly affected by this attack
(Ring-SIS [Mic02], Ideal-LWE [SSTX09], Ring-LWE [LPR10]), it could be considered desirable to
have efficient fallback options ready to use, in case subfields induce other unforeseen weaknesses.
While this work does not suggest an immediate threat to the Ring-SIS and Ring-LWE, such a
precaution is not unreasonable.
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An interesting option has been suggested in [Ber14] to use rings of the form Z[X]/(Xp−X−1).
The design rationale seems to be that Q[X]/(Xp −X − 1) has a reasonable expansion factor16

which is often needed for the correctness in cryptographic schemes, but is a non Galois extension
with a very large Galois group for its splitting field, which is intended to hinder algebraic
handles. In particular it contains no proper subfields. This leads to the design of the NTRUPrime
encryption scheme [BCLvV16]. We note that the security of this scheme is not supported by
a worst-case hardness argument. If such an argument is desired then we note that the search
version of Ideal/Ring-LWE is supported by worst-case hardness for any choices of number field,
and this is actually sufficient to achieve provable CPA-secure encryption, as already proved by
Stehlé, Steinfeld, Tanka and Xagawa [SSTX09].

Open Problems. Another natural option would be to choose p as a safe prime17 and to work
with the ring of integer of the totally real number field K = Q(ζp + ζ̄p). The field remains Galois,
and its automorphism group may still allow a quantum worst-case (Ideal-SVP) to average-case
(Ring-LWE) reduction a-la [LPR10] thanks to a generalization of the search to decision step
presented in [CLS15]. Nevertheless the Galois group has prime order (p− 1)/2, it has no proper
subgroups, and K has no proper subfields.

But working with K = Q(ζp + ζ̄p) has a drawback: the class number h(K) = h+p seems quite
small (see [Was97, Table 4 pp. 421]), and this makes the worst-case Ideal-SVP problem solvable

in quantum polynomial time for approximation factors 2Õ(
√
n) as proved in [CDPR16,BS16]: the

reduction of [LPR10] is vacuous for such parameters.

This raises the question of whether NTRU and Ring-LWE are actually strictly harder than
Ideal-SVP in the underlying number field, whether algorithms for Ideal-SVP in K can be lifted
to modules over K as used in NTRU, Ideal-LWE or Ring-LWE. In this regard, overstretched
NTRU, and Ideal/Ring-LWE with large approximation factors over the ring Z(ζp + ζ̄p) are very
interesting cryptanalytic target: despite those rings not being used in any proposed schemes so
far, such an attack will teach us a great deal on the asymptotic security of ideal-lattice based
cryptography.
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Table 4: Experiment report. Parameters set n = 211, r = 24, n′ = 27.

Instance Subfield LLL Lifted Fullfield BKZ

blg qc lg ‖(f ′, g′)‖ lg ‖(x′, y′)‖ α (traf) ∃v? lg ‖(x, y)‖ Success δ (ffa) β (ffa)

180 81.16 82.21 1.0028 Yes 82.81 Yes 1.0153 11
82.42 82.52 1.0003 Yes 82.95 Yes 1.0153 11

179 82.28 82.42 1.0004 Yes 82.76 Yes 1.0153 13
82.90 82.92 1.0001 Yes 83.26 Yes 1.0153 13

178 81.93 82.74 1.0022 Yes 83.33 Yes 1.0152 14
82.63 82.28 0.9990 Yes 82.88 Yes 1.0152 14

177 82.41 82.62 1.0006 Yes 83.50 Yes 1.0151 15
83.35 82.48 0.9977 Yes 82.97 Yes 1.0151 15

176 81.97 82.62 1.0018 Yes 83.74 Yes 1.0150 16
84.37 83.04 0.9964 Yes 83.58 Yes 1.0150 16

175 81.60 81.82 1.0006 Yes 82.63 Yes 1.0149 17
80.94 81.84 1.0024 Yes 82.62 Yes 1.0149 17

174 83.85 82.76 0.9971 Yes 83.30 Yes 1.0148 18
82.15 82.77 1.0017 Yes 83.47 Yes 1.0148 18

173 82.10 82.41 1.0008 Yes 83.15 Yes 1.0147 19
82.20 82.56 1.0010 Yes 83.22 Yes 1.0147 19

172 82.23 82.15 0.9998 Yes 82.79 Yes 1.0147 20
83.12 82.75 0.9990 Yes 83.33 Yes 1.0147 20

171 83.05 83.37 1.0009 Yes 84.11 Yes 1.0146 21
83.00 83.03 1.0001 Yes 83.54 Yes 1.0146 21

170 84.24 83.02 0.9967 Yes 83.45 Yes 1.0145 22
82.45 82.84 1.0011 Yes∗ 83.15 Yes 1.0145 22

169 83.31 82.82 0.9987 Yes 83.53 Yes 1.0144 23
83.99 82.50 0.9960 Yes 83.44 Yes 1.0144 23

168 84.01 82.69 0.9965 Yes 83.32 Yes 1.0143 24
82.91 82.13 0.9979 Yes 82.56 Yes 1.0143 24

167 83.33 82.66 0.9982 Yes 83.31 Yes 1.0142 25
82.67 82.96 1.0008 Yes∗ 83.76 Yes 1.0142 25

166 82.88 82.38 0.9986 Yes 82.85 Yes 1.0141 26
83.44 82.50 0.9975 Yes 82.87 Yes 1.0141 26

165 82.75 82.99 1.0006 Yes 83.50 Yes 1.0141 27
82.74 82.55 0.9995 Yes 83.33 Yes 1.0141 27

164 82.43 89.67 1.0198 No 167.67 No 1.0140 28
81.44 89.78 1.0228 No 167.73 No 1.0140 28

163 81.16 89.45 1.0227 No 166.69 No 1.0139 29
84.57 89.25 1.0128 No 166.69 No 1.0139 29

162 82.60 88.73 1.0168 No 165.71 No 1.0138 30
82.67 88.95 1.0172 No 165.71 No 1.0138 30

161 82.84 88.44 1.0153 No 164.70 No 1.0137 31
81.97 88.20 1.0170 No 164.72 No 1.0137 31

160 80.82 87.73 1.0189 No 163.68 No 1.0136 32
83.96 87.90 1.0107 No 163.72 No 1.0136 32

Each of this run took about 3.5 Hours, single-threaded.
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Table 5: Experiment report. Parameters set n = 211, r = 23, n′ = 28.

Instance Subfield LLL Lifted Fullfield BKZ

blg qc lg ‖(f ′, g′)‖ lg ‖(x′, y′)‖ α (traf) ∃v? lg ‖(x, y)‖ Success δ (ffa) β (ffa)

110 42.27 47.72 1.0074 Yes 49.20 Yes 1.0094 98
41.85 47.55 1.0078 Yes 48.01 Yes 1.0094 98

109 42.15 47.64 1.0075 Yes 48.22 Yes 1.0093 100
41.88 47.48 1.0076 Yes 47.93 Yes 1.0093 100

108 42.12 48.11 1.0081 Yes 48.71 Yes 1.0092 102
42.04 48.13 1.0083 Yes 48.51 Yes 1.0092 102

107 42.28 47.89 1.0076 Yes 48.07 Yes 1.0091 104
42.19 47.69 1.0075 Yes 48.21 Yes 1.0091 104

106 42.11 47.98 1.0080 Yes 48.46 Yes 1.0090 106
42.15 48.01 1.0080 Yes 48.58 Yes 1.0090 106

105 41.53 47.52 1.0081 Yes∗ 47.94 Yes 1.0089 108
41.73 47.53 1.0079 Yes 48.23 Yes 1.0089 108

104 42.18 47.94 1.0078 Yes 48.17 Yes 1.0088 110
42.19 47.79 1.0076 Yes∗ 48.26 Yes 1.0088 110

103 42.67 47.89 1.0071 Yes 48.36 Yes 1.0088 112
41.85 47.59 1.0078 Yes 47.94 Yes 1.0088 112

102 42.26 47.77 1.0075 Yes 48.52 Yes 1.0087 114
41.72 47.52 1.0079 Yes 47.91 Yes 1.0087 114

101 41.77 47.72 1.0081 Yes 47.96 Yes 1.0086 117
42.07 47.76 1.0077 Yes 48.26 Yes 1.0086 117

100 41.48 47.77 1.0085 Yes 48.16 Yes 1.0085 119
42.14 47.71 1.0076 Yes 48.15 Yes 1.0085 119

99 41.83 47.67 1.0079 Yes 48.11 Yes 1.0084 121
42.02 47.70 1.0077 Yes 48.03 Yes 1.0084 121

98 42.57 48.05 1.0074 Yes 48.42 Yes 1.0083 123
41.74 47.88 1.0084 Yes 48.78 Yes 1.0083 123

97 42.60 47.80 1.0071 Yes 48.36 Yes 1.0082 126
42.51 48.10 1.0076 Yes 48.47 Yes 1.0082 126

96 41.89 47.46 1.0076 Yes 48.01 Yes 1.0082 128
41.87 48.09 1.0085 Yes 48.36 Yes 1.0082 128

95 42.25 47.75 1.0075 Yes 48.15 Yes 1.0081 131
41.85 47.96 1.0083 Yes 48.59 Yes 1.0081 131

94 41.99 63.63 1.0297 No 97.71 No 1.0080 133
42.57 63.32 1.0285 No 97.70 No 1.0080 133

93 41.87 62.75 1.0287 No 96.69 No 1.0079 136
41.90 63.02 1.0290 No 96.69 No 1.0079 136

92 42.01 62.05 1.0275 No 95.70 No 1.0078 139
42.79 62.12 1.0265 No 95.69 No 1.0078 139

91 42.10 62.08 1.0274 No 94.70 No 1.0077 141
41.74 61.39 1.0270 No 94.69 No 1.0077 141

90 42.15 61.28 1.0262 No 93.73 No 1.0076 144
42.07 61.08 1.0261 No 93.72 No 1.0076 144

89 41.86 60.54 1.0256 No 92.72 No 1.0076 147
42.20 60.82 1.0255 No 92.70 No 1.0076 147

Each of this run took about 50 Hours, single-threaded.
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Table 6: Experiment report. Parameters set n = 212, r = 24, n′ = 28.

Instance Subfield LLL Lifted Fullfield BKZ

blg qc lg ‖(f ′, g′)‖ lg ‖(x′, y′)‖ α (traf) ∃v? lg ‖(x, y)‖ Success δ (ffa) β (ffa)

240 90.60 94.55 1.0054 Yes 95.13 Yes 1.0102 82
90.78 94.67 1.0053 Yes 95.22 Yes 1.0102 82

235 91.16 95.06 1.0053 Yes 95.63 Yes 1.0100 86
91.08 94.50 1.0046 Yes 95.17 Yes 1.0100 86

230 90.44 95.00 1.0062 Yes 95.70 Yes 1.0098 90
90.58 94.62 1.0055 Yes 95.40 Yes 1.0098 90

225 91.57 95.56 1.0054 Yes∗ 96.28 Yes 1.0096 94
90.19 94.68 1.0061 Yes 95.32 Yes 1.0096 94

220 90.62 95.01 1.0060 Yes 95.74 Yes 1.0094 98
90.98 94.65 1.0050 Yes 95.34 Yes 1.0094 98

215 90.33 94.57 1.0057 Yes∗ 95.13 Yes 1.0091 103
91.52 94.77 1.0044 Yes 95.26 Yes 1.0091 103

210 91.43 95.33 1.0053 Yes 95.81 Yes 1.0089 108
90.48 94.73 1.0058 Yes 95.28 Yes 1.0089 108

205 91.59 94.64 1.0041 Yes∗ 95.04 Yes 1.0087 113
92.93 94.50 1.0021 Yes 95.10 Yes 1.0087 113

200 90.44 94.57 1.0056 Yes 95.10 Yes 1.0085 119
90.03 94.84 1.0065 Yes 95.51 Yes 1.0085 119

195 92.52 94.59 1.0028 Yes 95.37 Yes 1.0083 125
92.60 94.74 1.0029 Yes 95.90 Yes 1.0083 125

190 90.27 94.57 1.0058 Yes 95.14 Yes 1.0081 131
90.20 94.17 1.0054 Yes∗ 94.74 Yes 1.0081 131

185 91.02 108.99 1.0246 No 189.20 No 1.0079 137
91.17 108.66 1.0240 No 189.22 No 1.0079 137

180 91.27 106.31 1.0206 No 184.20 No 1.0076 144
91.29 106.39 1.0207 No 184.21 No 1.0076 144

175 90.08 103.93 1.0189 No 179.20 No 1.0074 151
91.30 103.31 1.0164 No 179.21 No 1.0074 151

Each of this run took about 120 Hours, single-threaded.
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