45 research outputs found

    Inhomogeneous Point-Processes to Instantaneously Assess Affective Haptic Perception through Heartbeat Dynamics Information

    Get PDF
    This study proposes the application of a comprehensive signal processing framework, based on inhomogeneous point-process models of heartbeat dynamics, to instantaneously assess affective haptic perception using electrocardiogram-derived information exclusively. The framework relies on inverse-Gaussian point-processes with Laguerre expansion of the nonlinear Wiener-Volterra kernels, accounting for the long-term information given by the past heartbeat events. Up to cubic-order nonlinearities allow for an instantaneous estimation of the dynamic spectrum and bispectrum of the considered cardiovascular dynamics, as well as for instantaneous measures of complexity, through Lyapunov exponents and entropy. Short-term caress-like stimuli were administered for 4.3?25?seconds on the forearms of 32 healthy volunteers (16 females) through a wearable haptic device, by selectively superimposing two levels of force, 2?N and 6?N, and two levels of velocity, 9.4?mm/s and 65?mm/s. Results demonstrated that our instantaneous linear and nonlinear features were able to finely characterize the affective haptic perception, with a recognition accuracy of 69.79% along the force dimension, and 81.25% along the velocity dimension

    C-tactile afferent stimulating touch carries a positive affective value

    Get PDF
    The rewarding sensation of touch in affiliative interactions is hypothesized to be underpinned by a specialized system of nerve fibers called C-Tactile afferents (CTs), which respond optimally to slowly moving, gentle touch, typical of a caress. However, empirical evidence to support the theory that CTs encode socially relevant, rewarding tactile information in humans is currently limited. While in healthy participants, touch applied at CT optimal velocities (1-10cm/sec) is reliably rated as subjectively pleasant, neuronopathy patients lacking large myelinated afferents, but with intact C-fibres, report that the conscious sensation elicited by stimulation of CTs is rather vague. Given this weak perceptual impact the value of self-report measures for assessing the specific affective value of CT activating touch appears limited. Therefore, we combined subjective ratings of touch pleasantness with implicit measures of affective state (facial electromyography) and autonomic arousal (heart rate) to determine whether CT activation carries a positive affective value. We recorded the activity of two key emotion-relevant facial muscle sites (zygomaticus major—smile muscle, positive affect & corrugator supercilii—frown muscle, negative affect) while participants evaluated the pleasantness of experimenter administered stroking touch, delivered using a soft brush, at two velocities (CT optimal 3cm/sec & CT non-optimal 30cm/sec), on two skin sites (CT innervated forearm & non-CT innervated palm). On both sites, 3cm/sec stroking touch was rated as more pleasant and produced greater heart rate deceleration than 30cm/sec stimulation. However, neither self-report ratings nor heart rate responses discriminated stimulation on the CT innervated arm from stroking of the non-CT innervated palm. In contrast, significantly greater activation of the zygomaticus major (smiling muscle) was seen specifically to CT optimal, 3cm/sec, stroking on the forearm in comparison to all other stimuli. These results offer the first empirical evidence in humans that tactile stimulation that optimally activates CTs carries a positive affective valence that can be measured implicitly

    Developmental perspectives on interpersonal affective touch

    Get PDF
    In the last decade, philosophy, neuroscience and psychology alike have paid increasing attention to the study of interpersonal affective touch, which refers to the emotional and motivational facets of tactile sensation. Some aspects of affective touch have been linked to a neurophysiologically specialised system, namely the C tactile (CT) system. While the role of this sys-tem for affiliation, social bonding and communication of emotions have been widely investigated, only recently researchers have started to focus on the potential role of interpersonal affective touch in acquiring awareness of the body as our own, i.e. as belonging to our psychological ‘self’. We review and discuss recent developmental and adult findings, pointing to the central role of interpersonal affective touch in body awareness and social cognition in health and disorders. We propose that interpersonal affective touch, as an interoceptive modality invested of a social nature, can uniquely contribute to the ongoing debate in philosophy about the primacy of the relational nature of the minimal self

    Somatosensory processing in neurodevelopmental disorders

    Get PDF
    The purpose of this article is to review the role of somatosensory perception in typical development, its aberration in a range of neurodevelopmental disorders, and the potential relations between tactile processing abnormalities and central features of each disorder such as motor, communication, and social development. Neurodevelopmental disorders that represent a range of symptoms and etiologies, and for which multiple peer-reviewed articles on somatosensory differences have been published, were chosen to include in the review. Relevant studies in animal models, as well as conditions of early sensory deprivation, are also included. Somatosensory processing plays an important, yet often overlooked, role in typical development and is aberrant in various neurodevelopmental disorders. This is demonstrated in studies of behavior, sensory thresholds, neuroanatomy, and neurophysiology in samples of children with Fragile X syndrome, autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD), and cerebral palsy (CP). Impaired somatosensory processing is found in a range of neurodevelopmental disorders and is associated with deficits in communication, motor ability, and social skills in these disorders. Given the central role of touch in early development, both experimental and clinical approaches should take into consideration the role of somatosensory processing in the etiology and treatment of neurodevelopmental disorders

    Physiological and behavioral responses reveal 9-month-old infants' sensitivity to pleasant touch.

    No full text
    Caregiving touch has been shown to be essential for the growth and development of human infants. However, the physiological and behavioral mechanisms that underpin infants' sensitivity to pleasant touch are still poorly understood. In human adults, a subclass of unmyelinated peripheral nerve fibers has been shown to respond preferentially to medium-velocity soft brushing. It has been theorized that this privileged pathway for pleasant touch is used for close affiliative interactions with conspecific individuals, especially between caregivers and infants. To test whether human infants are sensitive to pleasant touch, we examined arousal (heart rate) and attentional engagement (gaze shifts and duration of looks) to varying velocities of brushing (slow, medium, and fast) in 9-month-old infants. Our results provide physiological and behavioral evidence that sensitivity to pleasant touch emerges early in development and therefore plays an important role in regulating human social interactions

    Physiological and behavioral responses reveal 9-month-old infants' sensitivity to pleasant touch

    No full text
    Caregiving touch has been shown to be essential for the growth and development of human infants. However, the physiological and behavioral mechanisms that underpin infants’ sensitivity to pleasant touch are still poorly understood. In human adults, a subclass of unmyelinated peripheral nerve fibers has been shown to respond preferentially to medium-velocity soft brushing. It has been theorized that this privileged pathway for pleasant touch is used for close affiliative interactions with conspecific individuals, especially between caregivers and infants. To test whether human infants are sensitive to pleasant touch, we examined arousal (heart rate) and attentional engagement (gaze shifts and duration of looks) to varying velocities of brushing (slow, medium, and fast) in 9-month-old infants. Our results provide physiological and behavioral evidence that sensitivity to pleasant touch emerges early in development and therefore plays an important role in regulating human social interactions

    Disturbances in affective touch in hereditary sensory and autonomic neuropathy type III.

    Get PDF
    Hereditary sensory and autonomic neuropathy type III (HSAN III, Riley-Day syndrome, Familial Dysautomia) is characterised by elevated thermal thresholds and an indifference to pain. Using microelectrode recordings we recently showed that these patients possess no functional stretch-sensitive mechanoreceptors in their muscles (muscle spindles), a feature that may explain their lack of stretch reflexes and ataxic gait, yet patients have apparently normal low-threshold cutaneous mechanoreceptors. The density of C-fibres in the skin is markedly reduced in patients with HSAN III, but it is not known whether the C-tactile afferents, a distinct type of low-threshold C fibre present in hairy skin that is sensitive to gentle stroking and has been implicated in the coding of pleasant touch are specifically affected in HSAN III patients. We addressed the relationship between C-tactile afferent function and pleasant touch perception in 15 patients with HSAN III and 15 age-matched control subjects. A soft make-up brush was used to apply stroking stimuli to the forearm and lateral aspect of the leg at five velocities: 0.3, 1, 3, 10 and 30 cm/s. As demonstrated previously, the control subjects rated the slowest and highest velocities as less pleasant than those applied at 1-10 cm/s, which fits with the optimal velocities for exciting C-tactile afferents. Conversely, for the patients, ratings of pleasantness did not fit the profile for C-tactile afferents. Patients either rated the higher velocities as more pleasant than the slow velocities, with the slowest velocities being rated unpleasant, or rated all velocities equally pleasant. We interpret this to reflect absent or reduced C-tactile afferent density in the skin of patients with HSAN III, who are likely using tactile cues (i.e. myelinated afferents) to rate pleasantness of stroking or are attributing pleasantness to this type of stimulus irrespective of velocity

    Somatotopic organization of gentle touch processing in the posterior insular cortex.

    No full text
    A network of thin (C and A delta) afferents relays various signals related to the physiological condition of the body, including sensations of gentle touch, pain, and temperature changes. Such afferents project to the insular cortex, where a somatotopic organization of responses to noxious and cooling stimuli was recently observed. To explore the possibility of a corresponding body-map topography in relation to gentle touch mediated through C tactile (CT) fibers, we applied soft brush stimuli to the right forearm and thigh of a patient (GL) lacking A beta afferents, and six healthy subjects during functional magnetic resonance imaging (fMRI). For improved fMRI analysis, we used a highly sensitive multivariate voxel clustering approach. A somatotopic organization of the left (contralateral) posterior insular cortex was consistently demonstrated in all subjects, including GL, with forearm projecting anterior to thigh stimulation. Also, despite denying any sense of touch in daily life, GL correctly localized 97% of the stimuli to the forearm or thigh in a forced-choice paradigm. The consistency in activation patterns across GL and the healthy subjects suggests that the identified organization reflects the central projection of CT fibers. Moreover, substantial similarities of the presently observed insular activation with that described for noxious and cooling stimuli solidify the hypothesized sensory-affective role of the CT system in the maintenance of physical well-being as part of a thin-afferent homeostatic network
    corecore