1,051 research outputs found
Interpreting BEC in e+e- annihilation
The usual interpretation of Bose-Einstein correlations (BEC) of identical
boson pairs relates the width of the peak in the correlation function at small
relative four-momentum to the spatial extent of the source of the bosons.
However, in the tau-model, which successfully describes BEC in hadronic Z
decay, the width of the peak is related to the temporal extent of boson
emission. Some new checks on the validity of both the tau-model and the usual
descriptions are presented.Comment: Talk given at XLVIII International Symposium on Multiparticle
Dynamics, Singapore, 3-7 Sep. 2018. To appear in the proceeding
Nuclear dependence of the transverse single-spin asymmetry in the production of charged hadrons at forward rapidity in polarized , Al, and Au collisions at GeV
We report on the nuclear dependence of transverse single-spin asymmetries
(TSSAs) in the production of positively-charged hadrons in polarized
, Al and Au collisions at
GeV. The measurements have been performed at forward
rapidity () over the range of GeV and
. We observed a positive asymmetry for
positively-charged hadrons in \polpp collisions, and a significantly reduced
asymmetry in + collisions. These results reveal a nuclear
dependence of charged hadron in a regime where perturbative techniques
are relevant. These results provide new opportunities to use \polpA collisions
as a tool to investigate the rich phenomena behind TSSAs in hadronic collisions
and to use TSSA as a new handle in studying small-system collisions.Comment: 303 authors from 66 institutions, 9 pages, 2 figures, 1 table. v1 is
version accepted for publication in Physical Review Letters. Plain text data
tables for the points plotted in figures for this and previous PHENIX
publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Direct Measurement of the Top Quark Mass at D0
We determine the top quark mass m_t using t-tbar pairs produced in the D0
detector by \sqrt{s} = 1.8 TeV p-pbar collisions in a 125 pb^-1 exposure at the
Fermilab Tevatron. We make a two constraint fit to m_t in t-tbar -> b W^+bbar
W^- final states with one W boson decaying to q-qbar and the other to e-nu or
mu-nu. Likelihood fits to the data yield m_t(l+jets) = 173.3 +- 5.6 (stat) +-
5.5 (syst) GeV/c^2. When this result is combined with an analysis of events in
which both W bosons decay into leptons, we obtain m_t = 172.1 +- 5.2 (stat) +-
4.9 (syst) GeV/c^2. An alternate analysis, using three constraint fits to fixed
top quark masses, gives m_t(l+jets) = 176.0 +- 7.9 (stat) +- 4.8 (syst)
GeV/C^2, consistent with the above result. Studies of kinematic distributions
of the top quark candidates are also presented.Comment: 43 pages, 53 figures, 33 tables. RevTeX. Submitted to Phys. Rev.
Measurement of the Boson Mass
A measurement of the mass of the boson is presented based on a sample of
5982 decays observed in collisions at
= 1.8~TeV with the D\O\ detector during the 1992--1993 run. From a
fit to the transverse mass spectrum, combined with measurements of the
boson mass, the boson mass is measured to be .Comment: 12 pages, LaTex, style Revtex, including 3 postscript figures
(submitted to PRL
Search for a Fourth Generation Charge -1/3 Quark via Flavor Changing Neutral Current Decay
We report on a search for pair production of a fourth generation charge -1/3
quark (b') in pbar p collisions at sqrt(s) = 1.8 TeV at the Fermilab Tevatron
using an integrated luminosity of 93 pb^-1. Both quarks are assumed to decay
via flavor changing neutral currents (FCNC). The search uses the signatures
gamma + 3 jets + mu-tag and 2 gamma + 2 jets. We see no significant excess of
events over the expected background. We place an upper limit on the production
cross section times branching fraction that is well below theoretical
expectations for a b' quark decaying exclusively via FCNC for b' quark masses
up to m(Z) + m(b).Comment: Eleven pages, two postscript figures, submitted to Physical Review
Letter
Nuclear dependence of the transverse-single-spin asymmetry for forward neutron production in polarized collisions at GeV
During 2015 the Relativistic Heavy Ion Collider (RHIC) provided collisions of
transversely polarized protons with Au and Al nuclei for the first time,
enabling the exploration of transverse-single-spin asymmetries with heavy
nuclei. Large single-spin asymmetries in very forward neutron production have
been previously observed in transversely polarized collisions at
RHIC, and the existing theoretical framework that was successful in describing
the single-spin asymmetry in collisions predicts only a moderate
atomic-mass-number () dependence. In contrast, the asymmetries observed at
RHIC in collisions showed a surprisingly strong dependence in
inclusive forward neutron production. The observed asymmetry in Al
collisions is much smaller, while the asymmetry in Au collisions is a
factor of three larger in absolute value and of opposite sign. The interplay of
different neutron production mechanisms is discussed as a possible explanation
of the observed dependence.Comment: 315 authors, 8 pages, 4 figures, 1 table. v2 is version accepted for
publication in Phys. Rev. Lett. Plain text data tables for the points plotted
in figures for this and previous PHENIX publications are (or will be)
publicly available at http://www.phenix.bnl.gov/papers.htm
- …