33 research outputs found

    Adsorption of fluoride on a green adsorbent derived from wastepaper: Kinetic, isotherm and characterisation study

    Get PDF
    The excessive concentration of fluoride (F−) in water represents a grave problem for several countries, especially those that depend on groundwater as a main source of drinking water. Therefore, many treatment methods, such as chemical precipitation and membrane, were practised to remove F− from water. However, the traditional methods suffer from many limitations, such as the high cost and the slowness. Hence, many studies have been directed towards developing novel and effective water defluoridation methods. In this context, the current study investigates the development of an eco-friendly adsorbent by extracting Ca, Al, and Fe from industrial by-products, precipitating them on sand particles, and using this new adsorbent to remove F− from water. The removal experiments were commenced under different pH levels (3-10), contact times (0–240 minutes) and concentrations of F− (7.5–37.5 mg/L). X-ray fluorescence (XRF), X-ray diffraction Investigator (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) methods were used to characterise the green adsorbent. Adsorption isotherm and kinetic studies were also conducted to define the adsorption type. The results confirmed that the new adsorbent could remove as high as 86% of F− at pH, contact time, agitation speed and adsorbent dose of 10, 180 minutes, 200 rpm and 15 mg/L, respectively. The characterisation studies prove the occurrence of the sorption process and the suitability of the morphology of the adsorbent for F− removal. Adsorption kinetics follow better with a pseudo-first-order model that indicates the predominance of physisorption, which agrees with the FTIR results. The isotherm study indicated that Langmuir isotherm is more suitable for representing data with an R2 value of 0.992, which means the adsorption of F− occurs as monolayer adsorption on homogeneous sites on the surface of the new adsorbent. In summary, it can be concluded that the developed adsorbent in this study could be a promising alternative to the traditional F− removal methods

    Macro-Climatic Distribution Limits Show Both Niche Expansion and Niche Specialization among C4 Panicoids

    Get PDF
    Grasses are ancestrally tropical understory species whose current dominance in warm open habitats is linked to the evolution of C4 photosynthesis. C4 grasses maintain high rates of photosynthesis in warm and water stressed environments, and the syndrome is considered to induce niche shifts into these habitats while adaptation to cold ones may be compromised. Global biogeographic analyses of C4 grasses have, however, concentrated on diversity patterns, while paying little attention to distributional limits. Using phylogenetic contrast analyses, we compared macro-climatic distribution limits among ~1300 grasses from the subfamily Panicoideae, which includes 4/5 of the known photosynthetic transitions in grasses. We explored whether evolution of C4 photosynthesis correlates with niche expansions, niche changes, or stasis at subfamily level and within the two tribes Paniceae and Paspaleae. We compared the climatic extremes of growing season temperatures, aridity, and mean temperatures of the coldest months. We found support for all the known biogeographic distribution patterns of C4 species, these patterns were, however, formed both by niche expansion and niche changes. The only ubiquitous response to a change in the photosynthetic pathway within Panicoideae was a niche expansion of the C4 species into regions with higher growing season temperatures, but without a withdrawal from the inherited climate niche. Other patterns varied among the tribes, as macro-climatic niche evolution in the American tribe Paspaleae differed from the pattern supported in the globally distributed tribe Paniceae and at family level.Fil: Aagesen, Lone. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BotĂĄnica Darwinion. Academia Nacional de Ciencias Exactas, FĂ­sicas y Naturales. Instituto de BotĂĄnica Darwinion; ArgentinaFil: Biganzoli, Fernando. Universidad de Buenos Aires. Facultad de AgronomĂ­a. Departamento de MĂ©todos Cuantitativos y Sistemas de InformaciĂłn; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Bena, MarĂ­a Julia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BotĂĄnica Darwinion. Academia Nacional de Ciencias Exactas, FĂ­sicas y Naturales. Instituto de BotĂĄnica Darwinion; ArgentinaFil: Godoy BĂŒrki, Ana Carolina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BotĂĄnica Darwinion. Academia Nacional de Ciencias Exactas, FĂ­sicas y Naturales. Instituto de BotĂĄnica Darwinion; ArgentinaFil: Reinheimer, Renata. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto de AgrobiotecnologĂ­a del Litoral. Universidad Nacional del Litoral. Instituto de AgrobiotecnologĂ­a del Litoral; ArgentinaFil: Zuloaga, Fernando Omar. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BotĂĄnica Darwinion. Academia Nacional de Ciencias Exactas, FĂ­sicas y Naturales. Instituto de BotĂĄnica Darwinion; Argentin

    Loss and Damage in the Rapidly Changing Arctic

    Get PDF
    Arctic climate change is happening much faster than the global average. Arctic change also has global consequences, in addition to local ones. Scientific evidence shows that meltwater of Arctic sources contributes to sea-level rise significantly while accounting for 35% of current global sea-level rise. Arctic communities have to find ways to deal with rapidly changing environmental conditions that are leading to social impacts such as outmigration, similarly to the global South. International debates on Loss and Damage have not addressed the Arctic so far. We review literature to show what impacts of climate change are already visible in the Arctic, and present local cases in order to provide empirical evidence of losses and damages in the Arctic region. This evidence is particularly well presented in the context of outmigration and relocation of which we highlight examples. The review reveals a need for new governance mechanisms and institutional frameworks to tackle Loss and Damage. Finally, we discuss what implications Arctic losses and damages have for the international debate

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Energetic costs and implications of the intake of plant secondary metabolites on digestive and renal morphology in two austral passerines

    No full text
    Seed-eating birds have a diet of high nutritional value; however, they must cope with plant secondary metabolites (PSM). We postulated that the detoxification capacity of birds is associated with a metabolic cost, given that the organs responsible for detoxification significantly contribute to energetic metabolism. We used an experimental approach to assess the effects of phenol-enriched diets on two passerines with different feeding habits: the omnivorous rufous-collared sparrow (Zonotrichia capensis) and the granivorous common diuca-finch (Diuca diuca). The birds were fed with one of three diets: control diet, supplemented with tannic acid, or supplemented with Opuntia ficus-indica phenolic extract (a common food of the sparrow but not the finch). After 5 weeks of exposure to the diets, we measured basal metabolic rates (BMR), energy intake, glucuronic acid output and digestive and kidney structure. In both species, detoxification capacity expressed as glucuronic acid output was higher in individuals consuming phenol-enriched diets compared to the control diet. However, whereas sparrows increase energy intake and intestinal mass when feeding on phenol-enriched diets, finches had lower intestinal mass and energy intake remains stable. Furthermore, sparrows had higher BMR on phenol-enriched diets compared to the control group, whereas in the finches BMR remains unchanged. Interspecific differences in response to phenols intake may be determined by the dietary habits of these species. While both species can feed on moderate phenolic diets for 5 weeks, energy costs may differ due to different responses in food intake and organ structure to counteract the effects of PSM intake.Fil: Barceló, Gonzalo. Universidad de Chile; ChileFil: Rios, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Maldonado, Karin. Universidad de Chile; ChileFil: Sabatino, Pablo. Universidad de Chile; Chile. Pontificia Universidad Católica de Chile; Chil
    corecore