13 research outputs found

    Ligandos de NKG2D: nuevos aspectos sobre su bioquímica, su papel en interacciones celulares y su modulación por fármacos antitumorales

    Full text link
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 10-03-2017Esta tesis tiene embargado el acceso al texto completo hasta el 10-09-201

    Immunoassays for scarce tumour-antigens in exosomes: Detection of the human NKG2D-Ligand, MICA, in tetraspanin-containing nanovesicles from melanoma

    Get PDF
    Abstract Background Tumour-derived exosomes can be released to serum and provide information on the features of the malignancy, however, in order to perform systematic studies in biological samples, faster diagnostic techniques are needed, especially for detection of low abundance proteins. Most human cancer cells are positive for at least one ligand for the activating immune receptor NKG2D and the presence in plasma of NKG2D-ligands can be associated with prognosis. Methods Using MICA as example of a tumour-derived antigen, endogenously expressed in metastatic melanoma and recruited to exosomes, we have developed two immunocapture-based assays for detection of different epitopes in nanovesicles. Although both techniques, enzyme-linked immunosorbent assay (ELISA) and Lateral flow immunoassays (LFIA) have the same theoretical basis, that is, using capture and detection antibodies for a colorimetric read-out, analysis of exosome-bound proteins poses methodological problems that do not occur when these techniques are used for detection of soluble molecules, due to the presence of multiple epitopes on the vesicle. Results Here we demonstrate that, in ELISA, the signal obtained was directly proportional to the amount of epitopes per exosome. In LFIA, the amount of detection antibody immobilized in Au-nanoparticles needs to be low for efficient detection, otherwise steric hindrance results in lower signal. We describe the conditions for detection of MICA in exosomes and prove, for the first time using both techniques, the co-existence in one vesicle of exosomal markers (the tetraspanins CD9, CD63 and CD81) and an endogenously expressed tumour-derived antigen. The study also reveals that scarce proteins can be used as targets for detection antibody in LFIA with a better result than very abundant proteins and that the conditions can be optimized for detection of the protein in plasma. Conclusions These results open the possibility of analyzing biological samples for the presence of tumour-derived exosomes using high throughput techniques.This work has been supported by Grants from Madrid Regional Government [IMMUNOTHERCAN-CM (S2010/BMD-2326)] and the Spanish Ministry of Economy [SAF2015-69169-R (MINEICO/FEDER) and MAT2017-84959-C2-1-R.; the Network of Excellence for Research in Exosomes, Rediex (MINEICO/FEDER); the Consejería de Economía y Empleo del Principado de Asturias (Plan de Ciencia, Tecnología e Innovación 2013-2017), under the Grant GRUPIN14-022. SL-C was a recipient of a FPU fellowship (MECD), and a travel fellowship from the Spanish Group of Extracellular Vesicles (GEIVEX); CC-S was a recipient of a master’s fellowship from “Postgrado de la Fundación Ramón Areces-UAM

    Development of a rapid lateral flow immunoassay test for detection of exosomes previously enriched from cell culture medium and body fluids

    Get PDF
    Exosomes are cell-secreted nanovesicles (40–200 nm) that represent a rich source of novel biomarkers in the diagnosis and prognosis of certain diseases. Despite the increasingly recognized relevance of these vesicles as biomarkers, their detection has been limited due in part to current technical challenges in the rapid isolation and analysis of exosomes. The complexity of the development of analytical platforms relies on the heterogeneous composition of the exosome membrane. One of the most attractive tests is the inmunochromatographic strips, which allow rapid detection by unskilled operators. We have successfully developed a novel lateral flow immunoassay (LFIA) for the detection of exosomes based on the use of tetraspanins as targets. We have applied this platform for the detection of exosomes purified from different sources: cell culture supernatants, human plasma and urine. As proof of concept, we explored the analytical potential of this LFIA platform to accurately quantify exosomes purified from a human metastatic melanoma cell line. The one-step assay can be completed in 15 min, with a limit of detection of 8.54×105 exosomes/µL when a blend of anti-CD9 and anti-CD81 were selected as capture antibodies and anti-CD63 labelled with gold nanoparticles as detection antibody. Based on our results, this platform could be well suited to be used as a rapid exosome quantification tool, with promising diagnostic applications, bearing in mind that the detection of exosomes from different sources may require adaptation of the analytical settings to their specific composition.FICYT; Ministerio de Educación; Ministerio de Economía y Competitividad; Gobierno Regional de Asturias; Gobierno Regional de Madri

    Glycosyl-phosphatidyl-inositol (GPI)-anchors and metalloproteases: their roles in the regulation of exosome composition and NKG2D-mediated immune recognition

    Get PDF
    Communication within the immune system depends on the release of factors that can travel and transmit information at points distant from the cell that produced them. In general, immune cells use two key strategies that can occur either at the plasma membrane or in intracellular compartments to produce such factors, vesicle release and proteolytic cleavage. Release of soluble factors in exosomes, a subset of vesicles that originate from intracellular compartments, depends generally on biochemical and lipid environment features. This physical environment allows proteins to be recruited to membrane microdomains that will be later endocytosed and further released to the extracellular milieu. Cholesterol and sphingolipid rich domains (also known as lipid rafts or detergent-resistant membranes, DRMs) often contribute to exosomes and these regions are rich in proteins modified with Glycosyl-Phosphatidyl-Inositol (GPI) and lipids. For this reason, many palmitoylated and GPI-anchored proteins are preferentially recruited to exosomes. In this review, we analyse the biochemical features involved in the release of NKG2D-ligands as an example of functionally related gene families encoding both transmembrane and GPI-anchored proteins that can be released either by proteolysis or in exosomes, and modulate the intensity of the immune response. The immune receptor NKG2D is present in all human Natural Killer and T cells and plays an important role in the first barrier of defence against tumor and infection. However, tumor cells can evade the immune system by releasing NKG2D-ligands to induce down-regulation of the receptor. Some NKG2D-ligands can be recruited to exosomes and potently modulate receptor expression and immune function, while other are more susceptible to metalloprotease cleavage and are shed as soluble molecules. Strikingly, metalloprotease inhibition is sufficient to drive the accumulation in exosomes of ligands otherwise released by metalloprotease cleavage. In consequence, NKG2D-ligands appear as different entities in different cells, depending on cellular metabolism and biochemical structure, which mediate different intensities of immune modulation. We discuss whether similar mechanisms, depending on an interplay between metalloprotease cleavage and exosome release, could be a more general feature regulating the composition of exosomes released from human cells

    Characterization of a Human Anti-Tumoral NK Cell Population Expanded After BCG Treatment of Leukocytes

    Get PDF
    Immunotherapy, via intra-vesical instillations of BCG, is the therapy of choice for patients with high-risk non-muscle invasive bladder cancer. The subsequent recruitment of lymphocytes and myeloid cells, as well as the release of cytokines and chemokines, is believed to induce a local immune response that eliminates these tumors, but the detailed mechanisms of action of this therapy are not well understood. Here, we have studied the phenotype and function of the responding lymphocyte populations as well as the spectrum of cytokines and chemokines produced in an in vitro model of human peripheral blood mononuclear cells (PBMCs) co-cultured with BCG. Natural killer (NK) cell activation was a prominent feature of this immune response and we have studied the expansion of this lymphocyte population in detail. We show that, after BCG stimulation, CD56dim NK cells proliferate, upregulate CD56, but maintain the expression of CD16 and the ability to mediate ADCC. CD56bright NK cells also contribute to this expansion by increasing CD16 and KIR expression. These unconventional CD56bright cells efficiently degranulated against bladder cancer cells and the expansion of this population required the release of soluble factors by other immune cells in the context of BCG. Consistent with these in vitro data, a small, but significant increase in the intensity of CD16 expression was noted in peripheral blood CD56bright cells from bladder cancer patients undergoing BCG therapy, that was not observed in patients treated with mitomycin-C instillations. These observations suggest that activation of NK cells may be an important component of the anti-tumoral immune response triggered by BCG therapy in bladder cancer.This work was supported by grants from Madrid Regional Government “INMUNOTHERCAN”[S2010/BMD-2326 (LMP, MVG)]; the Spanish Ministries of Economy and Health [SAF-2012–32293, SAF2015–69169-R(MVG) and SAF2014–58752-R (HTR)]; EMGC and SLC are recipients of Fellowships from La Caixa and Spanish Ministry of Education (FPU),respectively.Peer reviewe

    Impaired NK cell recognition of vemurafenib-treated melanoma cells is overcome by simultaneous application of histone deacetylase inhibitors

    No full text
    Therapy of metastatic melanoma advanced recently with the clinical implementation of signalling pathway inhibitors, such as vemurafenib, specifically targeting mutant BRAF. In general, patients experience remarkable clinical responses under BRAF inhibitor (BRAFi) treatment but eventually progress within 6–8 months due to resistance development. Responding metastases show an increased immune cell infiltrate, including also NK cells, that, however, is no longer detectable in BRAFi-resistant lesions, suggesting NK cell activity should be exploited to prevent disease progression. Here, we examined the effects of BRAFi on the expression of ligands targeting activating NK cells receptors immediately after treatment onset, prior to resistance development. We demonstrate that BRAF mutant melanoma cells cultured in the presence of vemurafenib, strongly decreased surface expression of ligands for NK activating receptors including the NKG2D-ligand, MICA, and the DNAM-1 ligand, CD155, and became significantly less susceptible to NK cell attack. NKG2D-ligand protein downregulation was due to a significant decrease in mRNA levels, already detectable 24 h after drug treatment. Interestingly, vemurafenib-induced MICA downregulation could be counteracted by treatment of melanoma cells with the histone deacetylase (HDAC) inhibitor (HDACi) sodium butyrate, that also upregulated the DNAM1-ligand, Nectin-2. HDACi treatment enhanced surface expression of NKG2D-ligands in the presence of BRAFi, accompanied by recovery of NK cell recognition, but only upon simultaneous drug application. These results suggest that co-administration of BRAFi and HDAC inhibitors as well as having direct effects on melanoma cell survival, could also synergise to improve NK cell recognition and avoid tumour immune evasion.SLC was the recipient of a mobility fellowship from the Spanish Education Ministry and a recipient of a FPU fellowship (MECD); EMG-C was a recipient of a PhD fellowship from “Fundación La Caixa”, CC-S was a recipient of a JAE-Intro fellowship (CSIC)

    MOESM1 of Immunoassays for scarce tumour-antigens in exosomes: detection of the human NKG2D-Ligand, MICA, in tetraspanin-containing nanovesicles from melanoma

    No full text
    Additional file 1: Figure S1. Optimization of LFIA for exosomal MICA detection. A. Antibodies combination. Different antibody combinations for capture and detection, as indicated, were tried. B. Running buffer composition. The addition of different concentrations of Tween 20 and ethanol with anti-MICA in the running buffer was tested. In A and B, the amount of antibody-coupled AuNP was 10 µL, thus, for comparison, the same set of strips was used in the no ethanol (0% ethanol) and 10 µL of detection antibody sets. C. Incubation time. Melanoma exosomes were incubated with the detection antibody anti-MICA conjugated to AuNP for different times prior to the run on the strip. D. Effect of including two steps for dispensing exosomes and antibody-coupled NP to the LFIA strip. Exosomes were incubated with detection anti-MICA antibody NP and dispensed to the dipstick in one step. Alternatively, exosomes were run first and, in a second step, the detection antibody-coupled NP. The test strips in triplicates are shown. Right graph: quantitation of the test line signal represented as arbitrary units (a.u.). Data are the mean and SEM of the triplicates. The capture antibodies were immobilized manually in the strips and exosomes were not pre-incubated with detection antibody for one hour in A and B. In B, C and D, anti-CD9 was used as capture antibody and anti-MICA-NP for detection. Melanoma exosomes derived from Ma-Mel-55 (55) or Ma-Mel-86c (86c) were run (E, EXO) or no exosomes as control (B, BLANK). The position of the test (T) and control lines (C) are depicted. Figure S2. Visual analysis of the sample pads colour. Pads from the experiments above were scanned to appreciate the material still embedded in the pad at the end of the running time. A. Effect of incubation time. Pads from the experiments shown in Additional Figure 1C. B. Titration of exosome concentration. Pads from the experiments shown in Figure 4B

    BCG Therapy of bladder cancer stimulates a prolonged release of the chemoattractant CXCL10 (IP10) in patient urine

    No full text
    © 2019 by the authors.[Background]: Intra-vesical instillation of Bacille Calmette–Guérin (BCG), an attenuated strain of Mycobacterium bovis, is an effective therapy for high-grade non-muscle invasive bladder cancer (NMIBC), which provokes a local immune response resulting in 70% of patients free of relapse after three years. Because non-responder patients usually have a bad prognosis, the early identification of treatment failure is crucial. We hypothesized that, if an effective immune response was taking place in the bladder, soluble factors would be released to the urine many days after BCG instillations.[Methods]: An extensive panel of cytokines and chemokines released into the urine seven days after every BCG instillation was screened in a cohort of NMIBC patients over three years.[Results]: The determinations of the urinary concentrations of cytokines, chemokines, and creatinine showed that increasing concentrations of C-X-C motif chemokine 10 (CXCL10) also known as interferon-inducible protein 10 (IP10) could be detected during the six-week induction cycle of BCG-treated patients released into the urine by CD14+ cells. In vitro, CXCL10 facilitated the recruitment of effector immune cells after the BCG-mediated upregulation of CXCR3 in both T- and natural killer (NK)-cells. Conclusions: The high concentrations of chemokine detected one week after the encounter with mycobacteria suggest that the CXCL10 axis might be related to the intensity of the immune anti-tumor response.This research was funded by the Madrid Regional Government (S2010/BMD-2326 IMMUNOTHERCAN-CM (B2017/BMD-3733)/FEDER), and the Spanish Ministries of Economy and Health (SAF2015-69169-R, RTC-2017-6379-1, RTI2018-093569-B-I00 (MINECO/FEDER)); E.M.G.C. and S.L.C. were the recipients of fellowships from the La Caixa and Spanish Ministry of Education (FPU), respectively; C.S. was an Erasmus-visiting student from Sorbonne University. The APC was partially funded by CSIC.Peer reviewe
    corecore