19 research outputs found

    28 -- 40 GHz variability and polarimetry of bright compact sources in the QUIJOTE cosmological fields

    Full text link
    We observed 51 sources in the Q-U-I JOint TEnerife (QUIJOTE) cosmological fields which were brighter than 1 Jy at 30 GHz in the Planck Point Source Catalogue (version 1), with the Very Large Array at 28 -- 40 GHz, in order to characterise their high-radio-frequency variability and polarization properties. We find a roughly log-normal distribution of polarization fractions with a median of 2%, in agreement with previous studies, and a median rotation measure (RM) of ≈\approx 1110 rad m−2^{-2} with one outlier up to ≈\approx 64000 rad m−2^{-2} which is among the highest RMs measured in quasar cores. We find hints of a correlation between the total intensity flux density and median polarization fraction. We find 59% of sources are variable in total intensity, and 100% in polarization at 3σ3\sigma level, with no apparent correlation between total intensity variability and polarization variability. This indicates that it will be difficult to model these sources without simultaneous polarimetric monitoring observations and they will need to be masked for cosmological analysis.Comment: 17 pages, 14 figures, accepted to MNRA

    The Atacama Cosmology Telescope: Extragalactic Point Sources in the Southern Surveys at 150, 220 and 280 GHz observed between 2008-2010

    Full text link
    We present a multi-frequency, multi-epoch catalog of extragalactic sources. The catalog is based on 150, 220 and 280 GHz observations carried out in 2008, 2009 and 2010 using the Millimeter Bolometric Array Camera on the Atacama Cosmology Telescope. We also present and release 280 GHz maps from 2008 and 2010. The catalog contains 695 sources, found in a sky area of ∼600{\sim}600 square degrees. It is obtained by cross-matching sources found in 11 sub-catalogs, one for each season and frequency band. Also include are co-added data from ∼150{\sim}150 and ∼160{\sim}160 square degrees using 2 and 3 years of overlapping observations. We divide the sources into two populations, synchrotron and dusty emitters, based on their spectral behavior in the 150-220 GHz frequency range. We find 374 synchrotron sources and 321 dusty source candidates. Cross-matching with catalogs from radio to X-ray results in 264 synchrotron sources (71%) and 89 dusty sources (28%) with counterparts, suggesting that 232 dusty candidates are not in existing catalogs. We study the variability and number counts of each population. In the case of synchrotron sources, we find year-to-year variability up to 60%, with a mean value around 35%. As expected, we find no evidence of dusty source variability. Our number counts generally agree with previous measurements and models, except for dusty sources at 280 GHz where some models overestimate our results. We also characterize the spectral energy distribution of a dusty star-forming galaxy, ACT-S J065207-551605, using our data and higher frequency observations.Comment: 24 pages, 16 figures, for associated data products see https://lambda.gsfc.nasa.gov/product/act/act_prod_table.htm

    The new multi-frequency instrument (MFI2) for the QUIJOTE facility in Tenerife

    Get PDF
    Event: SPIE Astronomical Telescopes + Instrumentation, 2022, Montréal, Québec, Canada.et al.The QUIJOTE (Q-U-I joint Tenerife) experiment combines the operation of two radio-telescopes and three instruments working in the microwave bands 10–20 GHz, 26–36 GHz and 35–47 GHz at the Teide Observatory, Tenerife, and has already been presented in previous SPIE meetings (Hoyland, R. J. et al, 2012; Rubi˜no-Mart´ın et al., 2012). The Cosmology group at the IAC have designed a new upgrade to the MFI instrument in the band 10–20 GHz. The aim of the QUIJOTE telescopes is to characterise the polarised emission of the cosmic microwave background (CMB), as well as galactic and extra-galactic sources, at medium and large angular scales. This MFI2 will continue the survey at even higher sensitivity levels. The MFI2 project led by the Instituto de Astrof´ısica de Canarias (IAC) consists of five polarimeters, three of them operating in the sub-band 10–15 GHz, and two in the sub-band 15–20 GHz. The MFI2 instrument is expected to be a full two–three times more sensitive than the former MFI. The microwave complex correlator design has been replaced by a simple correlator design with a digital back-end based on the latest Xilinx FPGAs (ZCU111). During the first half of 2019 the manufacture of the new cryostat was completed and since then the opto-mechanical components have been designed and manufactured. It is expected that the cryogenic front-end will be completed by the end of 2022 along with the FPGA acquisition and observing system. This digital system has been employed to be more robust against stray ground-based and satellite interference, having a frequency resolution of 1 MHz.Partial financial support is provided by the Spanish Ministry of Science and Innovation (MICINN), under the projects AYA2017-84185-P, IACA15-BE-3707, EQC2018-004918-P and the FEDER Agreement INSIDE-OOCC (ICTS-2019-03-IAC-12). We also acknowledge financial support of the Severo Ochoa Programs SEV-2015-0548 and CEX2019-000920-S.Peer reviewe

    QUIJOTE scientific results – IX. Radio sources in the QUIJOTE-MFI wide survey maps

    Get PDF
    We present the catalogue of Q-U-I JOint TEnerife (QUIJOTE) Wide Survey radio sources extracted from the maps of the Multi-Frequency Instrument compiled between 2012 and 2018. The catalogue contains 786 sources observed in intensity and polarization, and is divided into two separate sub-catalogues: one containing 47 bright sources previously studied by the Planck collaboration and an extended catalogue of 739 sources either selected from the Planck Second Catalogue of Compact Sources or found through a blind search carried out with a Mexican Hat 2 wavelet. A significant fraction of the sources in our catalogue (38.7 per cent) are within the |b| ≤ 20° region of the Galactic plane. We determine statistical properties for those sources that are likely to be extragalactic. We find that these statistical properties are compatible with currently available models, with a ∼1.8 Jy completeness limit at 11 GHz. We provide the polarimetric properties of (38, 33, 31, 23) sources with P detected above the significance level at (11, 13, 17, 19) GHz respectively. Median polarization fractions are in the 2.8–4.7 per cent range in the 11–19 GHz frequency interval. We do not distinguish between Galactic and extragalactic sources here. The results presented here are consistent with those reported in the literature for flat- and steep-spectrum radio sources.Partial financial support was provided by the Spanish Ministry of Science and Innovation under the projects AYA2007-68058-C03-01, AYA2007-68058-C03-02, AYA2010-21766-C03-01, AYA2010-21766-C03-02, AYA2014-60438-P, ESP2015-70646-C2-1-R, AYA2017-84185-P, ESP2017-83921-C2-1-R, AYA2017-90675-REDC (co-funded with EU FEDER funds), PGC2018-101814-B-I00, PID2019-110610RB-C21, PID2020-120514GB-I00, IACA13-3E-2336, IACA15-BE-3707, EQC2018-004918-P, the Severo Ochoa Programs SEV-2015-0548 and CEX2019-000920-S, the María de Maeztu Program MDM-2017-0765, and by the Consolider-Ingenio project CSD2010-00064 (EPI: Exploring the Physics of Inflation). DT acknowledges the support from the Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (PIFI) with Grant N. 2020PM0042. FP acknowledges support from the Spanish State Research Agency (AEI) under grant number PID2019-105552RB-C43. We acknowledge support from the ACIISI, Consejería de Economía, Conocimiento y Empleo del Gobierno de Canarias, and the European Regional Development Fund (ERDF) under grant with reference ProID2020010108. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement number 687312 (RADIOFOREGROUNDS).With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2019-000920-S).Peer reviewe

    QUIJOTE scientific results - V. The microwave intensity and polarization spectra of the Galactic regions W49, W51 and IC443

    Get PDF
    We present new intensity and polarization maps obtained with the QUIJOTE experiment towards the Galactic regions W49, W51 and IC443, covering the frequency range from 10 to 20 GHz at ∼ 1 deg angular resolution, with a sensitivity in the range 35–79 μK beam−1 for total intensity and 13–23 μK beam−1 for polarization. For each region, we combine QUIJOTE maps with ancillary data at frequencies ranging from 0.4 to 3000 GHz, reconstruct the spectral energy distribution and model it with a combination of known foregrounds. We detect anomalous microwave emission (AME) in total intensity towards W49 at 4.7σ and W51 at 4.0σ with peak frequencies νAME = (20.0 ± 1.4) GHz and νAME = (17.7 ± 3.6) GHz, respectively; this is the first detection of AME towards W51. The contamination from ultracompact H II regions to the residual AME flux density is estimated at 10 per cent in W49 and 5 per cent in W51, and does not rule out the AME detection. The polarized SEDs reveal a synchrotron contribution with spectral indices αs = −0.67 ± 0.10 in W49 and αs = −0.51 ± 0.07 in W51, ascribed to the diffuse Galactic emission and to the local supernova remnant, respectively. Towards IC443 in total intensity we measure a broken power-law synchrotron spectrum with cut-off frequency ν0,s = (114 ± 73) GHz, in agreement with previous studies; our analysis, however, rules out any AME contribution which had been previously claimed towards IC443. No evidence of polarized AME emission is detected in this study.Partial financial support was provided by the Spanish Ministry of Science and Innovation under the projects AYA2007-68058-C03-01, AYA2007-68058-C03-02, AYA2010-21766-C03-01,AYA2010-21766-C03-02, AYA2014-60438-P, ESP2015-70646-C2-1-R, AYA2017-84185-P,ESP2017-83921-C2-1-R,AYA2017-90675-REDC (co-funded with EU FEDER funds), PGC2018-101814-B-I00, PID2019-110610RB-C21, PID2020-120514GB-I00, IACA13-3E-2336, IACA15-BE-3707, EQC2018-004918-P, the Severo Ochoa Programs SEV-2015-0548 and CEX2019-000920-S, the Maria de Maeztu Program MDM-2017-0765, and by the Consolider-Ingenio project CSD2010-00064 (EPI: Exploring the Physics of Inflation). We acknowledge support from the ACIISI, Consejeria de Economia, Conocimiento y Empleo del Gobierno de Canarias and the European Regional Development Fund (ERDF) under grant with reference ProID2020010108. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement number 687312 (RADIOFOREGROUNDS). DT acknowledges the support from the Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (PIFI) with Grant N. 2020PM0042; DT also acknowledges the support from the South African Claude Leon Foundation, that partially funded this work. EdlH acknowledges partial financial support from the Concepción Arenal Programme of the Universidad de Cantabria. FG acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 101001897). FP acknowledges the European Commission under the Marie Sklodowska-Curie Actions within the European Union’s Horizon 2020 research and innovation programme under Grant Agreement number 658499 (PolAME). FP acknowledges support from the Spanish State Research Agency (AEI) under grant numbers PID2019-105552RB-C43. BR-G acknowledges ASI-INFN Agreement 2014-037-R.0.With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2019-000920-S).Peer reviewe

    QUIJOTE Scientific Results – XVII. Studying the anomalous microwave emission in the Andromeda Galaxy with QUIJOTE-MFI

    Get PDF
    The Andromeda Galaxy (M31) is the Local Group galaxy that is most similar to the Milky Way (MW). The similarities between the two galaxies make M31 useful for studying integrated properties common to spiral galaxies. We use the data from the recent QUIJOTE-MFI Wide Survey, together with new raster observations focused on M31, to study its integrated emission. The addition of raster data improves the sensitivity of QUIJOTE-MFI maps by almost a factor 3. Our main interest is to confirm if anomalous microwave emission (AME) is present in M31, as previous studies have suggested. To do so, we built the integrated spectral energy distribution of M31 between 0.408 and 3000 GHz. We then performed a component separation analysis taking into account synchrotron, free–free, AME, and thermal dust components. AME in M31 is modelled as a lognormal distribution with maximum amplitude, AAME, equal to 1.03 ± 0.32 Jy. It peaks at νAME = 17.2 ± 3.2 GHz with a width of WAME = 0.58 ± 0.16. Both the Akaike and Bayesian information criteria find the model without AME to be less than 1 per cent as probable as the one taking AME into consideration. We find that the AME emissivity per 100 μm intensity in M31 is 28.4 GHz AME = 9.6 ± 3.1 μK MJy−1 sr, similar to that of the MW. We also provide the first upper limits for the AME polarization fraction in an extragalactic object. M31 remains the only galaxy where an AME measurement has been made of its integrated spectrum.Partial financial support was provided by the Spanish Ministry of Science and Innovation under the projects AYA2007-68058-C03-01, AYA2007-68058-C03-02, AYA2010-21766-C03-01, AYA2010-21766-C03-02, AYA2014-60438-P, ESP2015-70646-C2-1-R, AYA2017-84185-P,ESP2017-83921-C2-1-R, PID2019-110610RB-C21, PID2020-120514GB-I00, IACA13-3E-2336, IACA15-BE-3707, EQC2018-004918-P, the Severo Ochoa Programs SEV-2015-0548 and CEX2019-000920-S, the Maria de Maeztu Program MDM-2017-0765, and by the Consolider-Ingenio project CSD2010-00064 (EPI: Exploring the Physics of Inflation). We acknowledge support from the ACIISI, Consejeria de Economia, Conocimiento y Empleo del Gobierno de Canarias, and the European Regional Development Fund (ERDF) under grant with reference ProID2020010108. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement number 687312 (RADIOFOREGROUNDS). MFT acknowledges support from the Spanish Agencia Estatal de Investigación (AEI) of the Ministerio de Ciencia, Innovación y Universidades (MCIU) and the European Social Fund (ESF) under grant with reference PRE-C-2018-0067. CA-T acknowledges support from the Millennium Nucleus on Young Exoplanets and their Moons (YEMS). FP acknowledges support from the Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI) under the European FEDER (Fondo Europeo de Desarrollo Regional) de Canarias 2014–2020 grant No. PROID2021010078.With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2019-000920-S).Peer reviewe

    QUIJOTE scientific results - XIII. Intensity and polarization study of the microwave spectra of supernova remnants in the QUIJOTE-MFI wide survey: CTB 80, Cygnus Loop, HB 21, CTA 1, Tycho, and HB 9

    Get PDF
    We use the new QUIJOTE-MFI wide survey (11, 13, 17, and 19 GHz) to produce spectral energy distributions (SEDs), on an angular scale of 1◦, of the supernova remnants (SNRs) CTB 80, Cygnus Loop, HB 21, CTA 1, Tycho, and HB 9. We provide new measurements of the polarized synchrotron radiation in the microwave range. The intensity and polarization SEDs are obtained and modelled by combining QUIJOTE-MFI maps with ancillary data. In intensity, we confirm the curved spectra of CTB 80 and HB 21 with a break frequency νb at 2.0+1.2−0.5 and 5.0+1.2 −1.0 GHz, respectively; and spectral indices above the break of −0.6+0.04−0.05 and −0.86+0.04−0.05. We provide constraints on the Anomalous Microwave Emission, suggesting that it is negligible towards these SNRs. From a simultaneous intensity and polarization fit, we recover synchrotron spectral indices as flat as −0.24, and the whole sample has a mean and scatter of −0.44 ± 0.12. The polarization fractions have a mean and scatter of 6.1 ± 1.9 per cent. When combining our results with the measurements from other QUIJOTE (Q-U-I JOint TEnerife CMB experiment) studies of SNRs, we find that radio spectral indices are flatter for mature SNRs, and particularly flatter for CTB 80 (−0.24+0.07 −0.06) and HB 21 (−0.34+0.04 −0.03). In addition, the evolution of the spectral indices against the SNRs age is modelled with a power-law function, providing an exponent −0.07 ± 0.03 and amplitude −0.49 ± 0.02 (at 10 kyr), which are conservative with respect to previous studies of our Galaxy and the Large Magellanic Cloud.Partial financial support was provided by the Spanish Ministry of Science and Innovation under the projects AYA2007-68058-C03-01, AYA2007-68058-C03-02, AYA2010-21766-C03-01, AYA2010-21766-C03-02, AYA2014-60438-P, ESP2015-70646-C2-1-R, AYA2017-84185-P, ESP2017-83921-C2-1-R, PID2019-110610RB-C21, PID2020-120514GB-I00, PID2019-110614GB-C21, IACA13-3E-2336, IACA15-BE-3707, EQC2018-004918-P, the Severo Ochoa Programmes SEV-2015-0548 and CEX2019-000920-S, the Maria de Maeztu Programme MDM-2017-0765, and by the Consolider-Ingenio project CSD2010-00064 (EPI: Exploring the Physics of Inflation). We acknowledge support from the ACIISI, Consejeria de Economia, Conocimiento y Empleo del Gobierno de Canarias, and the European Regional Development Fund (ERDF) under grant with reference ProID2020010108. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 687312 (RADIOFOREGROUNDS).With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2019-000920-S).Peer reviewe

    QUIJOTE scientific results - XIII. Intensity and polarization study of the microwave spectra of supernova remnants in the QUIJOTE-MFI wide survey: CTB 80, Cygnus Loop, HB 21, CTA 1, Tycho, and HB 9

    No full text
    We use the new QUIJOTE-MFI wide survey (11, 13, 17, and 19 GHz) to produce spectral energy distributions (SEDs), on an angular scale of 1°, of the supernova remnants (SNRs) CTB 80, Cygnus Loop, HB 21, CTA 1, Tycho, and HB 9. We provide new measurements of the polarized synchrotron radiation in the microwave range. The intensity and polarization SEDs are obtained and modelled by combining QUIJOTE-MFI maps with ancillary data. In intensity, we confirm the curved spectra of CTB 80 and HB 21 with a break frequency νb at 2.0 and [+1.2 -0.5] 5.0 [+1.2 -1.0] GHz, respectively; and spectral indices above the break of -0.6[+0.04 -.0.05] and -0.86[+0.04 -0.05]. We provide constraints on the Anomalous Microwave Emission, suggesting that it is negligible towards these SNRs. From a simultaneous intensity and polarization fit, we recover synchrotron spectral indices as flat as -0.24, and the whole sample has a mean and scatter of -0.44 ± 0.12. The polarization fractions have a mean and scatter of 6.1 ± 1.9 per cent. When combining our results with the measurements from other QUIJOTE (Q-U-I JOint TEnerife CMB experiment) studies of SNRs, we find that radio spectral indices are flatter for mature SNRs, and particularly flatter for CTB 80 (-0.24 [+0.07 -0.06]) and HB 21 (-0.34 [+0.04 -0.03]). In addition, the evolution of the spectral indices against the SNRs age is modelled with a power-law function, providing an exponent -0.07 ± 0.03 and amplitude -0.49 ± 0.02 (at 10 kyr), which are conservative with respect to previous studies of our Galaxy and the Large Magellanic Cloud.CHLC appreciates the knowledge, professional training and affection received from Rodolfo Barbá, who has become the most important Supernova of my life. Now I can find you among the stars (RIP, 2021-12-07). We thank Terry Mahoney (Scientific Editorial Service of the IAC) for proofreading this manuscript. We thank the staff of the Teide Observatory for invaluable assistance in the commissioning and operation of QUIJOTE. The QUIJOTE experiment is being developed by the Instituto de Astrofisica de Canarias (IAC), the Instituto de Fisica de Cantabria (IFCA), and the Universities of Cantabria, Manchester and Cambridge. Partial financial support was provided by the Spanish Ministry of Science and Innovation under the projects AYA2007-68058-C03-01, AYA2007-68058-C03-02, AYA2010-21766-C03-01, AYA2010-21766-C03-02, AYA2014-60438-P, ESP2015-70646-C2-1-R, AYA2017-84185-P, ESP2017-83921-C2-1-R, PID2019-110610RB-C21, PID2020-120514GB-I00, PID2019-110614GB-C21, IACA13-3E-2336, IACA15-BE-3707, EQC2018-004918-P, the Severo Ochoa Programmes SEV-2015-0548 and CEX2019-000920-S, the Maria de Maeztu Programme MDM-2017-0765, and by the Consolider-Ingenio project CSD2010-00064 (EPI: Exploring the Physics of Inflation). We acknowledge support from the ACIISI, Consejeria de Economia, Conocimiento y Empleo del Gobierno de Canarias, and the European Regional Development Fund (ERDF) under grant with reference ProID2020010108. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 687312 (RADIOFOREGROUNDS)
    corecore