140 research outputs found

    An inventory system with time-dependent demand and partial backordering under return on inventory investment maximization

    Get PDF
    Producción CientíficaIn this article, we study an inventory system for items that have a power demand pattern and where shortages are allowed. We suppose that only a fixed proportion of demand during the stock-out period is backordered. The decision variables are the inventory cycle and the ratio between the initial stock and the total quantity demanded throughout the inventory cycle. The objective is to maximize the Return on Inventory Investment (ROII) defined as the ratio of the profit per unit time over the average inventory cost. After analyzing the objective function, the optimal global solutions for all the possible cases of the inventory problem are determined. These optimal policies that maximize the ROII are, in general, different from those that minimize the total inventory cost per unit time. Finally, a numerical sensitivity analysis of the optimal inventory policy with respect to the system input parameters and some useful managerial insights derived from the results are presented.Ministerio de Ciencia, Innovación y Universidades - Fondo Europeo de Desarrollo Regional (project MTM2017-84150-P

    Profitability index maximization in an inventory model with a price- and stock-dependent demand rate in a power-form

    Get PDF
    Producción CientíficaThis paper presents the optimal policy for an inventory model where the demand rate potentially depends on both selling price and stock level. The goal is the maximization of the profitability index, defined as the ratio income/expense. A numerical algorithm is proposed to calculate the optimal selling price. The optimal values for the depletion time, the cycle time, the maximum profitability index, and the lot size are evaluated from the selling price. The solution shows that the inventory must be replenished when the stock is depleted, i.e., the depletion time is always equal to the cycle time. The optimal policy is obtained with a suitable balance between ordering cost and holding cost. A condition that ensures the profitability of the financial investment in the inventory is established from the initial parameters. Profitability thresholds for several parameters, including the scale and the non-centrality parameters, keeping all the others fixed, are evaluated. The model with an isoelastic price-dependent demand is solved as a particular case. In this last model, all the optimal values are given in a closed form, and a sensitivity analysis is performed for several parameters, including the scale parameter. The results are illustrated with numerical examples.Ministerio de Ciencia, Innovación y Universidades y Fondo Europeo de Desarrollo Regional (FEDER) - (project MTM2017-84150-P

    Optimal policy for multi-item systems with stochastic demands, backlogged shortages and limited storage capacity

    Get PDF
    Producción CientíficaIn this paper, an inventory model for multiple products with stochastic demands is developed. The scheduling period or inventory cycle is known and prescribed. Demands are independent random variables and they follow power patterns throughout the inventory cycle. For each product, an aggregate cycle demand is realized first and then the demand is released to the inventory system gradually according to power patterns within a cycle. These demand patterns express different ways of drawing units from inventory and can be a good approach to modelling customer demands in inventory systems. Shortages are allowed and they are fully backlogged. It is assumed that the warehouse where the items are stored has a limited capacity. For this inventory system, we determine the inventory policy that maximizes the expected profit per unit time. An efficient algorithmic approach is proposed to calculate the optimal inventory levels at the beginning of the inventory cycle and to obtain the maximum expected profit per unit time. This inventory model is applicable to on-line sales of a wide variety of products. In this type of sales, customers do not receive the products at the time of purchase, but sellers deliver goods a few days later. Also, this model can be used to represent inventories of products for in-shop sales when the withdrawal of items from the inventory is not at the purchasing time, but occurs in a period after the sale of the products. This inventory model extends various inventory systems studied by other authors. Numerical examples are introduced to illustrate the theoretical results presented in this work.Ministerio de Ciencia, Innovación y Universidades - Fondo Europeo de Desarrollo Regional (project MTM2017-84150-P

    Potential use of space-based lightning detection in electric power systems

    Get PDF
    Information about lightning activity and its parameters is necessary to design and evaluate the lightning protection of an electrical power system. This information can be obtained from ground-based lightning detection networks that provide information on cloud-to-ground lightning strikes with a location accuracy of few hundred meters. Recently, the first satellite-based lightning optical detectors are operating continuously from geostationary orbits. These imagers observe the luminosity escaping from clouds to detect and locate total lightning activity with a spatial accuracy of several kilometers. This allows delineating the initiation and propagation (sometimes over tens to hundreds of kilometers before striking the ground) not observable by the ground-based networks. In this paper, we explore the use of this new technology for lightning protection in power systems. We focus on tall objects such as wind turbines and overhead transmission lines. We show how the optical detections allow identifying lightning flashes that likely produce continuing currents. This provides additional information for the identification of dangerous events and also can be used to estimate the number of upward-flashes from tall objects triggered by a nearby flash. The analysis of a transmission line shows the concentration of faults in the areas of high total lightning flash density. We found regional variations of the optical energy of the flashes along the line.This work was supported by research grants ESP2017-86263-C4-2-R funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way of making Europe”, by the “European Union”; and Grants PID2019- 109269RB-C42 and ENE2017-91636-EXP funded by MCIN/AEI/ 10.13039/501100011033. S. Goodman was in part supported by NASA Grant 80NSSC18K1689. M. M. F. Saba was in part supported by research grants 2012/15375–7 and 2013/05784–0, from Sao ˜ Paulo Research Foundation (FAPESP). S. Visacro was supported by a research grant (307381/2019–6) of the Brazilian National Council of Technological and Scientific Development (CNPq). The GLM data are available from the NOAA National Centers for Environmental Information (NCEI) and Cloud Service Providers (e.g., Amazon Web Services, AWS). The LIS data are available from the NASA GHRC Distributed Active Archive Center (DAAC) (https:// https://ghrc.nsstc.nasa.gov/home/access-data. The power system information for the 500 kV transmission line is provided by ISA-INTERCOLOMBIA and is supported by L. Porras.Peer ReviewedPostprint (author's final draft

    Circulating microRNA expression profile in B-cell acute lymphoblastic leukemia

    Get PDF
    BACKGROUND: Acute lymphoblastic leukemia (ALL) is a highly diverse disease characterized by cytogenetic and molecularabnormalities, including altered microRNA (miRNA) expression signatures. AIM: We perform and validate a plasma miRNA expression profiling to identify potential miRNA involved in leukemogenesis METHODS: MiRNA expression profiling assay was realized in 39 B-ALL and 7 normal control plasma samples using TaqMan Low Density Array (TLDA) plates on Applied Biosystems 7900 HT Fast Real-Time PCR System. MiRNA validation was done for six miRNA differentially expressed by quantitative real-time PCR. RESULTS: Seventy-seven circulating miRNA differentially expressed: hsa-miR-511, -222, and -34a were overexpressed, whereas hsa-miR-199a-3p, -223, -221, and -26a were underexpressed (p values < 0.005 for both sets). According to operating characteristic curve analysis, hsa-miR-511 was the most valuable biomarker for distinguishing B-ALL from normal controls,with an area under curve value of 1 and 100% for sensitivity, and specificity respectively. CONCLUSIONS: Measuring circulating levels of specific miRNA implicated in regulation of cell differentiation and/or cell proliferation such as hsa-miRNA-511, offers high sensitivity and specificity in B-ALL detection and may be potentially useful for detection of disease progression, as indicator of therapeutic response, and in the assessment of biological and/or therapeutic targets for patients with B-ALL

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Resultados Semilleros de Investigación 2009-2010

    Get PDF
    La publicación recoge los doce informes finales de investigación presentados por los estudiantes de ocho Semilleros 1 y cuatro Semilleros 2, correspondientes a la convocatoria 2009–2010 y se constituye en el Número 25 de la Serie de Investigaciones en Construcción, si bien este es el primer Número publicado en formato digital que UNIJUS se permite poner a disposición no sólo de la comunidad universitaria, sino también de la sociedad colombiana e internacional, interesada en los temas estudiados por los jóvenes investigadores de la Facultad de Derecho, Ciencias Políticas y Sociales de la Universidad Nacional de Colombia
    corecore