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Abstract: This paper presents the optimal policy for an inventory model where the demand rate
potentially depends on both selling price and stock level. The goal is the maximization of the
profitability index, defined as the ratio income/expense. A numerical algorithm is proposed to
calculate the optimal selling price. The optimal values for the depletion time, the cycle time, the
maximum profitability index, and the lot size are evaluated from the selling price. The solution shows
that the inventory must be replenished when the stock is depleted, i.e., the depletion time is always
equal to the cycle time. The optimal policy is obtained with a suitable balance between ordering
cost and holding cost. A condition that ensures the profitability of the financial investment in the
inventory is established from the initial parameters. Profitability thresholds for several parameters,
including the scale and the non-centrality parameters, keeping all the others fixed, are evaluated.
The model with an isoelastic price-dependent demand is solved as a particular case. In this last model,
all the optimal values are given in a closed form, and a sensitivity analysis is performed for several
parameters, including the scale parameter. The results are illustrated with numerical examples.

Keywords: inventory models; price- and stock-dependent demand; profitability index maximization;
isoelastic price-dependent demand

1. Introduction

Traditionally, the majority of the deterministic inventory models in the literature
consider the selling price of the item as a fixed parameter of the model. However, in most
real practical situations, it is common for the demand of the item to depend on its selling
price. This circumstance happens today, especially in such competitive business markets
as exist today. Consequently, inventory managers are not only interested in knowing
the optimal ordering policy for their warehouses, but also in the optimal selling price to
improve business profitability. For this reason, it is also necessary to consider the selling
price of the item as a decision variable in the model. Moreover, the demand rate also
depends on the selling price.

Several works have studied inventory models considering a price-dependent demand
rate. A pioneering paper developed by Within [1] incorporated the economic price theory
into the inventory theory, changing the classical approach from cost minimization to the
profit maximization approach. Arcelus and Srinivasan [2] presented an inventory model
where the demand rate was a function of the selling price. Furthermore, they raised
three possible objectives to maximize: profit (PR), residual income (RI), and return on
investment (ROI). The three solutions found become different. Later, Smith et al. [3]
studied an economic order quantity model (EOQ) with a profit maximization approach
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and three types of demand functions, which depend on the selling price (linear, potential,
and exponential functions). Along the same line, Chang et al. [4] introduced an EOQ model
with price- and stock-dependent demand for deteriorating items based on limited shelf
space, where the goal was the maximization of the profit per unit time.

Urban and Baker [5] considered a single-period inventory model (SPP) with a multi-
variate demand function of price, time and inventory level. They dealt with two decision
variables (the order quantity and the selling price) to maximize the profit per unit time.
However, they were not able to prove the quasi-concavity of the profit function for this
model. This fact, in addition to the complexity of the gradient vector and the Hessian
matrix of the profit function, led them to a situation wherein it was not so straightforward
to find a closed-form solution. They only found the optimal solution by using typical search
techniques, such as non-linear programming. In the field of production and inventory
theory, Teng and Chang [6] studied an economic production quantity model (EPQ) for de-
teriorating items with a price- and stock-dependent demand focused on the maximization
of the profit per unit time.

Dye and Hsieh [7] applied a numerical algorithm for finding the optimal inventory
policy in a deterministic model with price- and stock-dependent demand under fluctuating
cost and limited capacity. Their approach focused on maximizing the total profit during a
finite planning horizon. In the last decade, many papers have appeared on the subject of
inventory models with price- and stock-dependent demand. Some examples are Soni [8],
Avinadav et al. [9], Wu et al. [10], Mishra et al. [11], and Herbon and Khmelnitsky [12].

The majority of the papers cited above dealt with models where the objective is profit
maximization. However, profit and profitability do not always go together. Some business
can yield a high profit per unit time but low profitability because they need a lot of money
or resources to run. For example, with stock-dependent demand rate, a higher stock level
leads to a higher demand rate, which provides a larger profit and a greater investment
in the inventory costs. Thus, if the aim is profit maximization per unit time, the optimal
solution will tend to provide an inventory policy with a large lot size and a high inventory
cost. If monetary resources are limited, and the inventory manager has other investment
alternatives, perhaps a solution with a somewhat lower profit, but with a very much lower
cost, may be more interesting. Then, the goal should be the maximization of the ratio
between the income provided by the inventory system and the necessary costs to obtain it,
i.e., the maximization of the profitability of the inventory system. Thus, the manager could
allocate the available capital to the most profitable products of the supply chain, instead of
concentrating resources on the product with the highest profit per unit time. Profitability
maximization is a key issue addressed by the present paper.

Inventory models with profitability maximization have been much less studied in the
literature. From an overall point of view, Van Horne [13] defined the profitability index
(PI) of a business project as the ratio between the provided income (sum of the positive
entries in the account book) and the total accumulated cost (sum of the negative entries in
the account book). So, a project with PI greater than one is profitable because the income
is greater than the total cost. Such a project provides a quantity PI of currency units per
each unit spent. However, this index is not the only one used to measure profitability in
inventory theory. Schroeder and Krishnan [14] devised the term return on investment
(ROI). They defined ROI as the ratio of profit to the investing level, but only considering the
purchasing cost as investment. Otake et al. [15], Otake and Min [16], Li et al. [17], and Chen
and Liao [18] are some papers in this research line. Instead, Morse and Scheiner [19] used
the term residual income (RI), defined as the excess of net income over the opportunity
cost of invested capital. Dave [20] and Baldenius and Reichelstein [21] also advocated the
use of this profitability measurement.

Recently, Pando et al. [22] devised the term return on inventory management expense
(ROIME), defined as the ratio between the net profit (income minus total costs) and the
total costs involved in managing the inventory (purchasing cost, ordering cost, holding
cost, etc.). Then, the minimum value of the ROIME is −1 (when there are no sales), with a
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profitability index of PI = 0, because there is no income. On the other hand, the maximum
value for the ROIME is the ratio between the net profit per item (unit selling price p minus
unit purchasing cost c) and the unit purchasing cost c (when there is no other inventory
cost). In this case, the profitability index PI would be the ratio between the unit selling
price and the unit purchasing cost, i.e., p/c. In general, the mathematical relationship
between ROIME and PI is ROIME = PI − 1. So, it is clear that maximizing ROIME is
equivalent to maximizing PI. The other two problems, focused on the residual income
(RI) or on the return on investment (ROI), will have a different solution because they only
consider the purchasing cost as an investment. It seems fairer to us to consider all the costs,
when defining the profitability of the inventory system. That is why this paper focuses on
the maximization of the profitability index PI, which is equivalent to maximizing ROIME.

The outline of this paper is as follows. Section 2 develops the model and provides a
mathematical formulation to solve the problem. Section 3 includes the theoretical results
that lead to the optimal solution. Section 4 conducts a sensitivity analysis of the optimal
solution by using their partial derivatives. The special case with isoelastic price-dependent
demand is solved in a closed form in Section 5; this section also incorporates a sensitivity
analysis of the optimal solution regarding the parameters of the model. Section 6 illustrates
the application of the model with numerical examples. These examples are solved with
the proposed solution methodology, also providing a numerical sensitivity analysis for the
optimal lot size and the maximum profitability index. Finally, the conclusions and future
research lines are given in Section 7.

2. The Model

The inventory model is established under the following basic assumptions: (i) there
is a single item in the inventory; (ii) the item is replenished every T time units (inventory
cycle); (iii) the replenishment is instantaneous; (iv) the inventory is continuously reviewed;
(v) the planning horizon is infinite; (vi) shortages are not allowed; (vii) the unit purchasing
cost, c > 0, the ordering cost, K > 0, and the holding cost per unit and per unit time, h > 0,
are fixed and known parameters.

Denoting by t the elapsed time in the inventory, and I(t) the inventory level at time t,
this paper aims to consider a broad frame for the demand of the item, depending on the
selling price, p > c, and the stock level I(t). Prior literature on deterministic inventory
models with stock-dependent demand rate has mostly considered the potential function
λ(I(t))β with λ > 0 and 0 ≤ β < 1, introduced by Baker and Urban [23]. In regard to
price-dependent demand, the function λp−α, with λ > 0 and α > 1, has been used by
some authors; see, for example, Petruzzi and Dada [24] or Mahata et al. [25]. It is known as
the isoelastic price-dependent demand. A generalization of this function is the algebraic
price-dependent demand, given by the function (a + bp)−α with a ≥ 0, b > 0 and α > 2;
see, for example, Jeuland and Shugan [26]. The condition α > 2 was added by these authors
to get the rational conjectural behavior and the Nash equilibrium for the demand functions,
which are valued in the economic theory. Note that this function could be rewritten as
λ(γ + p)−α, with λ = b−α > 0 and γ = a/b ≥ 0. The special case of this function with
γ = 0 leads to the previous isoelastic price-dependent demand.

Now, in this paper, the two types of demand functions are combined in a multiplicative
way to define a deterministic price- and stock-dependent demand. The multiplicative
effect of the selling price and the stock-level on the demand rate has been considered by
other authors, such as Pal et al. [27] and Feng et al. [28]. In this way, it is assumed that the
demand rate for the item depends potentially on the stock level I(t) and the selling price p,
settling the following function:

D(p, I(t)) = λ(γ + p)−α(I(t))β, (1)

with γ ≥ 0, λ > 0, α > 2, and 0 ≤ β < 1. The α and β values are the elasticity parameters
of the demand regarding the selling price and the stock level, respectively. The value λ
is the scale parameter, and the value γ can be seen as the non-centrality parameter of the
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demand rate regarding the selling price. The four parameters all together allow a lot of
possibilities to be considered for the demand rate in real-life situations.

The joint multiplicative effect of the selling price and the stock level on the demand
rate hinders the role of the scale parameter λ of the demand function. As proposed by
Feng et al. [28], the value of this function, when I(t) = 1 and p = c, can be seen as the
maximum number Λ of potential consumers per unit time. Indeed, if there is only one
item in stock and the selling price is the smallest possible (the purchasing cost c), then all
potential customers would be willing to buy it. With the demand function given by (1),
this value is D(c, 1) = λ(γ + c)−α, and the scale parameter λ must be sufficiently large
that the value λ(γ + c)−α matches the number of potential consumers Λ. That is, the scale
parameter would be λ = Λ(γ + c)α, where Λ is the number of potential customers per
unit time.

The goal of the model is the maximization of the profitability index, defined as the
income/expense ratio. Taking into account that the demand rate depends on the inventory
level, it could be interesting to set a new order before the stock is depleted. Indeed, it
leads to an increase in the demand rate, so the income is improved, which could offset
the higher ordering and holding costs. Then, the optimal length T of the inventory cycle
could be strictly shorter than the time period τ that would be necessary to deplete the
inventory (depletion time). As shortages are not allowed, the condition T ≤ τ is required
in the model. Figure 1 plots the inventory level curves with T = τ and T < τ for a fixed
selling price p. Note that, if T < τ, the sales along the interval (T, τ) are I(0) − I(τ),
while, if T = τ, they are I(T−), with I(T−) = limt→T− I(t). Then, the sales are increased
by I(0)− I(τ)− I(T−) > 0, and the income is greater. For this reason, the two decision
variables τ and T are considered in the model along with the selling price p. The use of
the selling price as a decision variable, in addition to the profitability index maximization,
and the broad frame for the demand rate, are novelty contributions of this paper.

Figure 1. Inventory level curves with T < τ and T = τ.

With these assumptions, the inventory level curve can be obtained by solving the
differential equation dI(t)/dt = −D(p, I(t)) with the initial condition I(τ) = 0. The solu-
tion is

I(t) =
(
(1− β)λ(τ − t)

(γ + p)α

)1/(1−β)

,

with t ∈ [0, T].
The holding cost in a cycle H(p, τ, T) can be evaluated as

H(p, τ, T) =
∫ T

0
hI(t)dt = A1

(
τ(2−β)/(1−β) − (τ − T)(2−β)/(1−β)

(γ + p)α/(1−β)

)
, (2)

where A1 is an auxiliary parameter defined as:

A1 =
h(1− β)[(1− β)λ]1/(1−β)

(2− β)
. (3)
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The lot size can be evaluated as a function of the decision variables as

q(p, τ, T) = I(0)− I(T−) = A2

(
τ1/(1−β) − (τ − T)1/(1−β)

(γ + p)α/(1−β)

)
, (4)

where A2 is an auxiliary parameter defined as:

A2 = ((1− β)λ)1/(1−β). (5)

The total cost in a cycle is the sum of the purchasing cost cq(p, τ, T), the ordering cost
K, and the holding cost H(p, τ, T). Then, the total cost per unit time leads to

C(p, τ, T) =
cq(p, τ, T) + K + H(p, τ, T)

T
. (6)

The income obtained in each inventory cycle is pq(p, τ, T). Then, the profitability
index for the system is given by:

W(p, τ, T) =
pq(p, τ, T)

cq(p, τ, T) + K + H(p, τ, T)
=

p
c + w(p, τ, T)

, (7)

where

w(p, τ, T) =
K + H(p, τ, T)

q(p, τ, T)
=

K(γ + p)α/(1−β) + A1

[
τ(2−β)/(1−β) − (τ − T)(2−β)/(1−β)

]
A2
[
τ1/(1−β) − (τ − T)1/(1−β)

]
.

(8)

The profit per unit time is given by:

G(p, τ, T) =
(p− c)q(p, τ, T)− K− H(p, τ, T)

T
, (9)

and it can be evaluated as

G(p, τ, T) = (W(p, τ, T)− 1)C(p, τ, T). (10)

Therefore, the ratio between the profit and the total cost leads to W(p, τ, T)− 1. In this
way, if the profitability index is, for example, 1.45, then the system provides 1.45 currency
units per each unit spent, and the profitability of the inventory is 45%.

Note that w(p, τ, T) > 0, and it can be seen as the average inventory cost per item (ex-
cluding the purchasing cost). Moreover, it ensures that 0 < W(p, τ, T) < p/c. Then, if p ≤ c,
it is clear that W(p, τ, T) < 1 for all the values of the decision variables, and the inventory
system never yields a profit because the income is always less than the total cost. So, we
suppose that p > c to maximize the profitability index. Thus, the maximization problem is

max
(p,τ,T)∈Ω

W(p, τ, T), (11)

where Ω =
{
(p, τ, T) ∈ R3�p > c, T > 0, τ ≥ T

}
is the feasible region.

3. The Solution of the Model

To solve the problem (11), we first consider a fixed selling price p, and then, the optimal
values

(
τ∗p , T∗p

)
which maximize the function Wp(τ, T) = W(p, τ, T) are determined.

From (7), it is clear that maximizing the function Wp(τ, T) is equivalent to minimizing
the function wp(τ, T) = w(p, τ, T) given by (8). Moreover, the inequalities 0 ≤ τ − T <
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τ, τ(2−β)/(1−β) − (τ − T)(2−β)/(1−β) > τ
[
τ1/(1−β) − (τ − T)1/(1−β)

]
, and τ1/(1−β) − (τ −

T)1/(1−β) ≤ τ1/(1−β) are true. Hence, the function wp(τ, T) satisfies

wp(τ, T) >
K(γ + p)α/(1−β)

A2τ1/(1−β)
+

A1τ

A2
= wp(τ, τ).

Then, for each given value p, the minimum of the function wp(τ, T) is obtained when
T = τ. Thus, the optimal length of the inventory cycle T∗p is equal to the optimal depletion
time τ∗p . Moreover, taking into account that A1/A2 = h(1 − β)/(2 − β), the optimal
depletion time τ∗p can be obtained by minimizing the function f (τ) given by

f (τ) = wp(τ, τ) =
K(γ + p)α/(1−β)

A2τ1/(1−β)
+

(1− β)hτ

2− β
.

The following lemma gives the solution to this problem.

Lemma 1. Consider the function f (x) = K(γ+p)α/(1−β)

A2x1/(1−β) + (1−β)hx
2−β , with x > 0 and A2 given by (5).

The minimum value of f (x) is obtained at the point

x∗ =

(
(2− β)K(γ + p)α/(1−β)

(1− β)2 A2h

)(1−β)/(2−β)

,

with
f (x∗) = (1− β)hx∗ = A3(γ + p)α/(2−β),

where A3 is an auxiliary parameter defined as:

A3 =

(
(2− β)K

1− β

)(1−β)/(2−β)( h
λ

)1/(2−β)

. (12)

Proof. Please see the proof in Appendix A.

From the previous lemma, for each given value p, the optimal cycle time T∗p , which is
equal to the optimal depletion time τ∗p , is given by

T∗p = τ∗p =

(
(2− β)K(γ + p)α/(1−β)

(1− β)2 A2h

)(1−β)/(2−β)

, (13)

where A2 is given by (5), and the maximum profitability index given by (7) is:

W∗(p) = W(p, T∗p , T∗p ) =
p

c + w
(

p, T∗p , T∗p
) =

p

c + A3(γ + p)α/(2−β)
, (14)

where A3 is given by (12).
Therefore, the issue now is to look for the selling price p which maximizes the function

W∗(p) given by (14). That is, the new problem is

max
p∈(c,∞)

W∗(p). (15)

Before solving it, the following lemma establishes an interesting property of the
function W∗(p).
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Lemma 2. Consider the function W∗(p) given by (14) and the auxiliary parameter A3 given
by (12). Suppose that the condition

c + γ ≥
(

2− β

αA3

)(2−β)/(α−2+β)

(16)

is accepted. Then, the function W∗(p) satisfies W∗(p) < 1 for all p ∈ (c, ∞).

Proof. Please see the proof in Appendix A.

The previous lemma ensures that, if the condition (16) is satisfied, then W(p, τ, T) < 1
for any values (p, τ, T) ∈ Ω, and the inventory system never yields a profit because the
income is always less than the total cost. So, from now on, we suppose that the parameters
of the inventory system satisfy the condition

c + γ <

(
2− β

αA3

)(2−β)/(α−2+β)

. (17)

This inequality is a necessary condition (but not sufficient) for the model to be prof-
itable and to make earnings.

The derivative of the function W∗(p) is given by

(W∗)′(p) =
A3ψ(p)(

c + A3(γ + p)α/(2−β)
)2 ,

with

ψ(p) = (γ + p)α/(2−β) −
(

α

2− β

)
p(γ + p)−1+α/(2−β) +

c
A3

. (18)

Then, the stationary points of the function W∗(p) can be obtained by solving the
equation ψ(p) = 0. Taking into account that

ψ′(p) = −
(

α(α− 2 + β)

(2− β)2

)
p(γ + p)−2+α/(2−β) < 0, (19)

the next theorem proves that the equation ψ(p) = 0 has a unique solution p∗ ∈ (c, ∞),
which can be obtained as the limit of a succession.

Theorem 1. (Optimal selling price) Consider the functions ψ(p) and ψ′(p) given by (18) and (19),
respectively, with p ∈ (c, ∞), and the auxiliary parameter A3 given by (12). Suppose that the
condition (17) is satisfied. Then, the following assertions are true:

(i) The equation ψ(p) = 0 has one, and only one, solution p∗ within the interval (c, ∞), which
satisfies ψ(p) > 0 if p ∈ (c, p∗), and ψ(p) < 0 if p ∈ (p∗, ∞).

(ii) This unique root p∗ of ψ(p) satisfies max(c, pL) < p∗ < pU , where

pL =

(
(2− β)c

(α− 2 + β)A3

)(2−β)/α

− γ,

pU =

(
2− β

α− 2 + β

)(
c(γ + c)1−α/(2−β)

A3
+ γ

)
.

(iii) The sequence {yn}∞
n=1 defined by

yn = yn−1 −
ψ(yn−1)

ψ′(yn−1)
,
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with y0 = pU , satisfies p∗ = limn→∞ yn.

Proof. Please see the proof in Appendix A.

The previous theorem ensures that the selling price p∗ is the unique stationary
point of the function W∗(p), and, moreover, it is the solution of the problem (15), be-
cause (W∗)′(p) > 0 if p ∈ (c, p∗), and (W∗)′(p) < 0 if p ∈ (p∗, ∞). From this result,
the next theorem gives the optimal policy for the inventory system, which can be obtained
from the solution of the problem (11).

Theorem 2. (Optimal policy) Suppose that the parameters of the inventory system satisfy the
condition (17). Consider the optimal selling price p∗ given by Theorem 1 and the functions
W(p, τ, T) and H(p, τ, T) given by (7) and (2), respectively. Then, the following assertions
are true:

(i) The maximum profitability index W∗ is

W∗ =

(
(2− β)(1− β)1−βλ

α2−βhK1−β(γ + p∗)α−2+β

)1/(2−β)

. (20)

(ii) The optimal cycle time T∗, which matches the optimal depletion time τ∗, is

T∗ = τ∗ =

(
(2− β)1−βK1−β(γ + p∗)α

(1− β)3−2βh1−βλ

)1/(2−β)

. (21)

(iii) The optimal lot size q∗ is

q∗ =
(

(2− β)Kλ

(1− β)h(γ + p∗)α

)1/(2−β)

. (22)

(iv) The optimal policy of the inventory system satisfies the equality

K = (1− β)H(p∗, T∗, T∗),

where K is the ordering cost, and H(p∗, T∗, T∗) is the optimal holding cost in an inventory cycle.

Proof. Please see the proof in Appendix A.

The next algorithm summarizes the procedure to obtain the optimal solution of the
inventory model using the previous theorems.

Remark 1. Note that, from assertion (i) of Theorem 1, if ψ(pk − TOL) > 0, then pk − TOL < p∗.
Moreover, from the proof of assertion (iii) in that theorem, p∗ < pk. As a consequence,
0 < pk − p∗ < TOL, and this condition is a suitable stopping rule for the Algorithm 1. In addition,
as can be seen in the proof of Theorem 1 given in Appendix A, the Algorithm 1 is based on the
Newton’s method for solving equations. Even more, in the proof of Theorem 1, it is also proved
that ψ(p0) = ψ(pU) < 0 and ψ′′(p0) < 0. Then, the Newton’s method converges in a quadratic
and monotonous way to the only root of the function ψ(p) (see, for example, Householder [29],
Theorem 4.2.4).
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Algorithm 1: Obtaining the optimal policy and the maximum profitability index.

(i) Calculate the auxiliary parameter A3 =
(
(2−β)K

1−β

)(1−β)/(2−β)( h
λ

)1/(2−β)
.

(ii) If c + γ ≥
(

2−β
αA3

)(2−β)/(α−2+β)
, then stop; the inventory system is not profitable. Otherwise, go to Step (iii).

(iii) Consider the function ψ(p) = (γ + p)α/(2−β) −
(

α
2−β

)
p(γ + p)−1+α/(2−β) + c

A3
and its derivative

ψ′(p) = −
(

α(α−2+β)

(2−β)2

)
p(γ + p)−2+α/(2−β). Select a tolerance parameter TOL > 0 for determining the selling

price.

(iv) Set p0 =
(

2−β
α−2+β

)(
c(γ+c)1−α/(2−β)

A3
+ γ

)
.

(v) Calculate pi = pi−1 −
ψ(pi−1)

ψ′(pi−1)
for i = 1, 2, 3... until the first index k that satisfies ψ(pk − TOL) > 0 is reached.

(vi) Take the value p∗ = pk as the optimal selling price.

(vii) Evaluate the optimal cycle time as T∗ =
(

(2−β)1−βK1−β(γ+p∗)α

(1−β)3−2βh1−βλ

)1/(2−β)

.

(viii) Obtain the maximum profitability index as W∗ =
(

(2−β)(1−β)1−βλ

α2−βhK1−β(γ+p∗)α−2+β

)1/(2−β)

.

(ix) Determine the optimal lot size as q∗ =
(

(2−β)Kλ

(1−β)h(γ+p∗)α

)1/(2−β)
.

Besides, if the demand rate does not depend on the stock level, that is β = 0, for any
values of the parameters α and γ, the ordering cost is equal to the holding cost, just as Harris’
rule establishes for the basic EOQ model. Otherwise, if 0 < β < 1, then K < H(p∗, T∗, T∗),
i.e., the ordering cost is less than the holding cost. Moreover, the inventory cost in each
cycle is K + H(p∗, T∗, T∗) = (2− β)K/(1− β), and the average inventory cost per item,
given by (8), can be evaluated for the optimal solution as

w∗ = w(p∗, T∗, T∗) =
(2− β)K
(1− β)q∗

. (23)

Then, from (7), the maximum profitability index is also given by

W∗ =
p∗

c + (2−β)K
(1−β)q∗

, (24)

which is the ratio between the income per item and the average total cost per item.
In addition, using the expressions (20) and (22), the ratio between the optimal lot size

and the maximum profitability index is

q∗

W∗
=

αK
(1− β)(γ + p∗)

.

Then, the total cost per unit time for the optimal solution, given by (6), could also be
evaluated as

C(p∗, T∗, T∗) =
p∗q∗

T∗W∗
=

(
αKp∗

(1− β)(γ + p∗)1+α/(2−β)

)(
(1− β)3−2βh1−βλ

(2− β)1−βK1−β

)1/(2−β)

=

(
α(Kλ)1/(2−β)p∗

(γ + p∗)1+α/(2−β)

)(
(1− β)h

2− β

)(1−β)/(2−β)

. (25)
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Similarly, the profit per unit time for this optimal solution, i.e., G(p∗, T∗, T∗), could be
evaluated as

G(p∗, T∗, T∗) = (W∗ − 1)C(p∗, T∗, T∗).

The inventory system would be profitable if, and only if, the income is strictly greater
than the total cost, i.e., if and only if W∗ > 1. Taking into account that ψ(p∗) = 0, from (18),
the optimal selling price p∗ satisfies c + A3(γ + p∗)α/(2−β) =

(
αA3
2−β

)
p∗(γ + p∗)−1+α/(2−β).

Then, the expression (14) can be used to obtain a profitability condition for the inventory
as follows:

W∗ > 1⇔ 2− β

αA3(γ + p∗)−1+α/(2−β)
> 1⇔ p∗ < −γ +

(
2− β

αA3

)(2−β)/(α−2+β)

. (26)

From (26), the next lemma provides a profitability condition which only depends on
the initial parameters of the model and allows the profitability threshold to be obtained for
each parameter, keeping all the others fixed.

Lemma 3. Suppose that the parameters of the inventory model satisfy the condition (17). Then, the
inventory system is profitable if, and only if, the following inequality:

hK1−β(c + γ)α−2+β

λ
< ∆ (27)

is satisfied, where

∆ =
(2− β)(1− β)1−β(α− 2 + β)α−2+β

αα
(28)

is an auxiliary parameter which only depends on the two elasticity parameters of the model.

Proof. Please see the proof in Appendix A.

Therefore, the inequality (27) provides a necessary and sufficient condition to be a
profitable model and generate earnings. Moreover, from this condition, it is possible to
deduce profitability thresholds for the parameters K, h, c, λ, and γ, keeping all the others
fixed. Table 1 collects these thresholds, where the notation θ = (c + γ)α−2+β is used.

Table 1. Profitability thresholds for the parameters K, h, c, λ, and γ of the inventory system.

Parameter: K < h < c < λ > γ <

Threshold:
(

λ∆
hθ

)1/(1−β) λ∆
K1−βθ

−γ+

(
λ∆

K1−βh

)1/(α−2+β)
hK1−βθ

∆ −c+
(

λ∆
K1−βh

)1/(α−2+β)

4. Sensitivity Analysis of the Optimal Policy

This section conducts a sensitivity analysis for the optimal solution, by using their
partial derivatives regarding the parameters K, h, λ, c, and γ.

The sensitivity of the optimal selling price p∗ with respect to these parameters is
analyzed in the next corollary.

Corollary 1. Let p∗ be the optimal selling price given by Theorem 1. Then:

(i) p∗ decreases as the ordering cost K, or the holding cost h per unit and per unit time, increases.
(ii) p∗ increases as the scale parameter λ of the demand rate, or the purchasing cost c, increases.
(iii) p∗ decreases as the non-centrality parameter γ increases if the condition (2− α/(2− β))p∗+

γ < 0 is satisfied. Otherwise, p∗ increases as γ increases.

Proof. Please see the proof in Appendix A.
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Remark 2. The expressions for the partial derivatives of p∗ obtained in this proof lead to

∂p∗

∂K
=

(1− β)h
K

∂p∗

∂h
< 0,

∂p∗

∂λ
=
−h
λ

∂p∗

∂h
> 0,

∂p∗

∂c
= − (2− β)h

c
∂p∗

∂h
> 0.

Thus,
∂p∗/∂c

p∗/c
>

∣∣∣∣∂p∗/∂h
p∗/h

∣∣∣∣ = ∂p∗/∂λ

p∗/λ
≥
∣∣∣∣∂p∗/∂K

p∗/K

∣∣∣∣
because 2− β > 1 ≥ 1− β. As a consequence, the relative change in the optimal selling price p∗ is
greater regarding the parameter c, later with respect to the parameter h or λ (which are equal), and
lower concerning the parameter K.

Next, the following corollary uses the closed expression (20) to develop a sensitivity
analysis of the maximum profitability index.

Corollary 2. Let W∗ be the maximum profitability index given by (20). Then:

(i) W∗ decreases as any of the parameters K, h, c, or γ increases.
(ii) W∗ increases as the scale parameter λ of the demand rate increases.

Proof. Please see the proof in Appendix A.

Remark 3. The expressions for the partial derivatives of W∗ obtained in this proof lead to

∂W∗

∂K
=

(1− β)h
K

∂W∗

∂h
< 0,

∂W∗

∂λ
=
−h
λ

∂W∗

∂h
> 0;

therefore, ∣∣∣∣∂W∗/∂h
W∗/h

∣∣∣∣ = ∂W∗/∂λ

W∗/λ
≥
∣∣∣∣∂W∗/∂K

W∗/K

∣∣∣∣
because 1− β ≤ 1. As a consequence, the maximum profitability index W∗ is equally sensitive
regarding the parameters h and λ, and more sensitive, with respect to these parameters h or λ,
than to the parameter K.

In a similar way, a sensitivity analysis of the optimal cycle time T∗ is performed in the
next corollary by using the closed expression (21).

Corollary 3. Let T∗ be optimal cycle time given by (21). Then:

(i) T∗ decreases as the holding cost h per unit and per unit time, or the scale parameter λ of the
demand rate, increases.

(ii) T∗ increases as any of the parameters K, c, or γ increases.

Proof. Please see the proof in Appendix A.

Finally, the following corollary shows the sensitivity analysis of the optimal lot size q∗,
which is given by the expression (22).

Corollary 4. Let q∗ be optimal lot size given by (22). Then:

(i) q∗ increases as the ordering cost K, or the scale parameter λ of the demand rate, increases.
(ii) q∗ decreases as any of the parameters h, c, or γ increases.
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Proof. Please see the proof in Appendix A.

In summary, the following bullet list collects the behavior of the optimal policy when
one of the parameters varies, keeping all the others fixed:

• If the ordering cost K increases, then the optimal values p∗ and W∗ decrease, while
the optimal values T∗ and q∗ increase.

• If the holding cost h per unit and per unit time increases, then all optimal values p∗,
W∗, T∗, and q∗ decrease.

• If the scale parameter λ of the demand rate increases, then the optimal values p∗, W∗,
and q∗ increase, while the optimal value T∗ decreases.

• If the unit purchasing cost c increases, then the optimal values p∗ and T∗ increase,
while the optimal values W∗ and q∗ decrease.

• If the non-centrality parameter γ increases, then the optimal values W∗ and q∗ decrease,
while T∗ increases. However, if γ increases, then the optimal selling price p∗ can
increase or decrease depending on what its value is.

5. The Case of the Isoelastic Price-Dependent Demand

A special case of the model solved in the previous section is the inventory system with
stock-dependent and isoelastic price-dependent demand, which is obtained with γ = 0 in
the expression (1). In this case, the demand function is

D(p, I(t)) = λp−α(I(t))β,

and the inventory level curve is

I(t) =
(
(1− β)λp−α(τ − t)

)1/(1−β),

with t ∈ [0, T].
The auxiliary parameters A1, A2, and A3, given by (3), (5), and (12), respectively, do

not change because they do not depend on γ.
Now, the function ψ(p) given by (18) can be written as

ψ(p) = −
(

α− 2 + β

2− β

)
pα/(2−β) +

c
A3

,

and the solution of the equation ψ(p) = 0 can be obtained in a closed form as

p∗0 =

(
(2− β)c

(α− 2 + β)A3

)(2−β)/α

.

Moreover, substituting A3 in the above expression with its value given by (12), the op-
timal selling price is

p∗0 =

(
(2− β)(1− β)1−βλc2−β

(α− 2 + β)2−βhK1−β

)1/α

. (29)

The optimal cycle time T∗0 , given by the expression (21) with γ = 0, leads to

T∗0 =

(
(2− β)1−βK1−β(p∗0)

α

(1− β)3−2βh1−βλ

)1/(2−β)

=
(2− β)c

(α− 2 + β)(1− β)h
. (30)

The maximum profitability index, given by (20) with γ = 0, leads to
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W∗0 =

(
(2− β)(1− β)1−βλ

α2−βhK1−β
(

p∗0
)α−2+β

)1/(2−β)

=

(
(2− β)(1− β)1−β(α− 2 + β)α−2+βλ

ααhK1−βcα−2+β

)1/α

. (31)

Finally, the optimal lot size q∗0 can be obtained from the expression (22), with γ = 0, as

q∗0 =

(
(2− β)Kλ

(1− β)h
(

p∗0
)α

)1/(2−β)

=
(α− 2 + β)K
(1− β)c

. (32)

Then, in this case, all the values for the optimal policy of the inventory system can be
obtained by a closed form. These optimal values only depend on the initial parameters of
the model. Therefore, these expressions are general, and they can be applied whatever the
values of the initial parameters are. Furthermore, these expressions lead to some interesting
conclusions, which can be extended and used in practical applications of the model. They
are listed below.

(i) First of all, from (7), p∗0/c would be the profitability index if there were no inventory
cost. Now, in the system with an isoelastic price dependent demand, from (24) and (32),
the optimal profitability index W∗0 satisfies the equality

W∗0
p∗0/c

= 1− 2− β

α
.

Thus, the ratio (2− β)/α is the relative drop in the profitability index due to the
inventory cost.

(ii) Note that, in this model, neither the optimal cycle time T∗0 nor the optimal lot size
q∗0 depend on the scale parameter λ of the demand rate. In addition, the optimal cycle time
T∗0 does not depend on the ordering cost K, and the optimal lot size q∗0 does not depend on
the parameter h of the holding cost.

(iii) Moreover, from (29), the optimal selling price p∗0 increases if the parameters c or λ
increase, and it decreases if the parameters K or h increase. Similarly, from (30), the optimal
length of the cycle time T∗0 decreases if the parameter h increases, and it increases if the
parameter c increases. In addition, from (31), the maximum profitability index W∗0 increases
if the parameter λ increases, and it decreases if any of the parameters K, h or c increase.
Finally, from (32), the optimal lot size q∗0 increases if the parameter K increases, and it
decreases if the parameter c increases.

The relative effect of the parameter K on the maximum profitability index W∗0 , given
by (31), can be evaluated as

∂W∗0 /∂K
W∗0 /K

= K
(

∂ ln(W∗0 )
∂K

)
= −

(
1− β

α

)
.

Similarly, for the parameters h, λ, and c, the expressions for the relative effects of these
parameters on W∗0 are

∂W∗0 /∂h
W∗0 /h

= −
(

1
α

)
= −

(
∂W∗0 /∂λ

W∗0 /λ

)
,

and
∂W∗0 /∂c
W∗0 /c

= −
(

α− 2 + β

α

)
.

Therefore, the relation between these quantities is∣∣∣∣∂W∗0 /∂h
W∗0 /h

∣∣∣∣ = (∂W∗0 /∂λ

W∗0 /λ

)
≥
∣∣∣∣∂W∗0 /∂K

W∗0 /K

∣∣∣∣.
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As a consequence, the maximum profitability index is more sensitive with respect to
the parameters h or λ than to the parameter K. The sensitivity with respect to the parameter
c can be greater or lower than concerning the parameters h, λ, or K, depending on the value
α− 2 + β.

In a similar way, the relative effects of the parameters K, h, and c on the optimal selling
price p∗0 are given by the expressions

∂p∗0/∂K
p∗0/K

= K
(

∂ ln(p∗0)
∂K

)
= −

(
1− β

α

)
,

∂p∗0/∂h
p∗0/h

= −
(

1
α

)
= −

(
∂p∗0/∂λ

p∗0/λ

)
,

∂p∗0/∂c
p∗0/c

=
2− β

α
.

Therefore, the relation between these quantities is

∂p∗0/∂c
p∗0/c

>

∣∣∣∣∂p∗0/∂h
p∗0/h

∣∣∣∣ = ∂p∗0/∂λ

p∗0/λ
≥
∣∣∣∣∂p∗0/∂K

p∗0/K

∣∣∣∣.
As a consequence, the optimal selling price p∗0 , given by (29), is first more sensitive

regarding the parameter c, then with respect to the parameter h or λ, and less sensitive
concerning the parameter K. In addition, the relative effects of the parameters K, h, and λ
on the maximum profitability index W∗0 and on the optimal selling price p∗0 are equal.

As expected, all these results agree with the ones obtained in Section 4.
With respect to the optimal length of the inventory cycle T∗0 , given by (30), the re-

sults are ∣∣∣∣∂T∗0 /∂h
T∗0 /h

∣∣∣∣ = 1 =
∂T∗0 /∂c

T∗0 /c
,

and T∗0 is equally sensitive regarding the parameters h and c, but with the opposite sign.
As stated before, it does not depend on the parameters K or λ.

Finally, for the optimal lot size q∗0 , given by (32), the results are

∂q∗0/∂K
q∗0/K

= 1 =

∣∣∣∣∂q∗0/∂c
q∗0/c

∣∣∣∣.
Therefore, the optimal lot size q∗0 is equally sensitive concerning the parameters K and

c, but with the opposite sign. As stated before, it does not depend on the parameters h or λ.
Note that, all these statements are based on the partial derivatives of the optimal solu-

tion with respect to the initial parameters. As a result, they can be completely generalized
for all the practical applications of the model.

The total cost of the system per unit time can be evaluated by placing γ = 0 in the
expression (25), taking into account the value p∗0 given by (29). Then,

C(p∗0 , T∗0 , T∗0 ) =
(
(1− β)h

2− β

)(1−β)/(2−β)
(

α(Kλ)1/(2−β)(
p∗0
)α/(2−β)

)
=

(α− 2 + β)αKh
(2− β)c

.

Taking into account the Equation (10), the profit per unit time for the optimal solution
can be evaluated as

G(p∗0 , T∗0 , T∗0 ) = (W∗0 − 1)C(p∗0 , T∗0 , T∗0 ).

This section, Section 5, has introduced a special case of the model previously solved in
Sections 2 and 3. This special case is the inventory system with stock-dependent and isoe-
lastic price-dependent demand, and it is obtained by placing γ = 0 on the expression (1).
Moreover, if the value β = 0 is also set in the expression (1), we are then dealing with an
inventory model where the demand depends on the price, but not on the inventory level.
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That is, the conditions γ = 0 and β = 0, placed together in the expression (1), lead us to
an inventory model with price-dependent demand, and such a demand does not depend
on the inventory level. In this case, the demand rate function is D(p) = λp−α; and the
inventory level curve is I(t) = λp−α(τ − t), with t ∈ [0, T]. Then, setting β = 0 in the
expressions (29)–(32), the optimal inventory policy is given by Table 2.

Table 2. Optimal policy in the inventory model with an isoelastic price-dependent demand, when such a demand does not
depend on the inventory level.

Selling Price Cycle Time Profitability Index Lot Size

p∗1 =

(
2λc2

(α− 2)2hK

)1/α

T∗1 =
2c

(α− 2)h W∗1 =

(
2(α− 2)α−2λ

ααKhcα−2

)1/α

q∗1 =
(α− 2)K

c

6. Computational Results

In this section, the proposed model and the solution methodology are illustrated
with a numerical example. Let us suppose that the purchasing cost for the item is c = 20
currency units, the ordering cost for a new replenishment is K = 1000 currency units,
and the holding cost per unit and per unit time (a week) for the inventory system is h = 5
currency units. Consider that the elasticity parameters for the demand rate are α = 4 and
β = 0.2, the non-centrality parameter is γ = 3, and the potential consumers are Λ = 300
per week. Then, the scale parameter of the demand function is λ = 300× 234 = 83,952,300.

Placing the values of these initial parameters on the expressions (12) and (28), the aux-
iliary parameters A3 and ∆ are calculated. Their values are A3 = 0.0030 and ∆ = 0.0333.
First, to be sure that this inventory system could be profitable, it is verified that these
numerical data satisfy the inequality (17), which is a necessary condition for the inventory
system to be profitable. As these numerical data satisfy this required condition, the process
goes forward to find the optimal policy of this inventory system. Therefore, Algorithm 1
is applied and the optimal policy is found. The obtained results are p∗ = 47.62 for the
optimal selling price, T∗ = 4.58 weeks for the optimal cycle time, q∗ = 122.7 for the optimal
lot size, and W∗ = 1.2422 for the maximum profitability index. Then, the profitability of
the inventory system is 24.22%.

The correctness of these results is checked in the following way. Applying the ex-
pression (2), it is found that the holding cost in an inventory cycle is H(p∗, T∗, T∗) =
1250. Applying the expression (6), it is calculated that the total cost per unit time is
C(p∗, T∗, T∗) = 1025.91. As the income per unit time is p∗q∗/T∗ = 1274.34, the profitabil-
ity index for the inventory system, obtained from (25), is W∗ = p∗q∗

T∗C(p∗ ,T∗ ,T∗) = 1274.34
1025.91 =

1.2422. This value coincides with the maximum profitability index given by the algo-
rithm. In addition, the average inventory cost per item is w∗ = (K + H(p∗, T∗, T∗))/q∗ =
(1000 + 1250)/122.7 = 18.34. This value is the same value provided by the expression (23)
because it is w∗ = (2− β)K/((1− β)q∗) = 18.34. Similarly, the ordering cost K = 1000
coincides with the value (1− β)H(p∗, T∗, T∗) = 0.8× 1250 = 1000, as stated in assertion
(iv) of Theorem 2.

It is also interesting to know the optimal solution for the problem of maximizing the
profit per unit time given by the objective function (9). This is the objective frequently
used in the literature on the subject. So, for this numerical example, the optimal policy of
this problem has been determined by using a numerical algorithm. The obtained optimal
solution is pG = 31.89, TG = 2.20, τG = 2.21, and qG = 316.0, with an optimal profit per
unit time of G∗ = 548.65. Note that, in this case, the optimal cycle time does not match
the optimal depletion time, because TG < τG. The profitability index for this solution
is W(pG, τG, TG) = 1.1359, which is less than the optimal profitability index obtained,
i.e., W∗ = 1.2422. Indeed, the profit per unit time for the maximum profitability index
solution is G(p∗, τ∗, T∗) = 248.43, which is less than the optimal profit per unit, i.e.,
G∗ = 548.65. Then, both solutions are different in the selling price, the cycle time, and the
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lot size. In addition, the differences in the profitability index and in the profit per unit time
are remarkable.

Next, the profitability thresholds for the parameters K, h, c, λ, and γ, keeping all the
others fixed, have been calculated taking into account the expressions collected in Table 1.
The obtained values are shown in Table 3.

Table 3. Profitability thresholds for the initial parameters of the analyzed inventory system.

K h c λ γ

Actual value 1000 5 20 83,952,300 3
Profitability threshold K < 2754.99 h < 11.25 c < 30.25 λ > 37,319,586 γ < 13.25

Then, the inventory system is profitable if the ordering cost K is at most 2754.99,
the holding cost per unit and per unit time h is at most 11.25, and the purchasing cost c is at
most 30.25. As the profitability threshold for the parameter λ is 37,319,586, the minimum
number of potential customers is Λ = λ(γ + c)−α = 134 customers per week. Finally,
the maximum value for the parameter γ is 13.25.

To analyze how the optimal policy varies with the parameters of the model, they have
been changed one by one, keeping the others fixed, and the optimal values p∗, T∗, W∗ and
q∗ have been evaluated again. Specifically, for each parameter, we have chosen size drops
of −15%, −10%, and −5%, and increments of 5%, 10%, and 15%. The obtained results are
shown in Table 4.

Table 4. Optimal policy of the model for different values of the initial parameters.

x ∆x = −15% ∆x = −10% ∆x = −5% ∆x = 5% ∆x = 10% ∆x = 15%

p∗ 49.21 48.65 48.12 47.16 46.72 46.30
K = 1000 T∗ 4.57 4.57 4.58 4.59 4.60 4.60

W∗ 1.2858 1.2703 1.2558 1.2293 1.2172 1.2058
q∗ 104.7 110.7 116.7 128.7 134.7 140.6

p∗ 49.62 48.91 48.24 47.04 46.49 45.98
h = 5 T∗ 5.37 5.08 4.82 4.37 4.18 4.00

W∗ 1.2969 1.2774 1.2592 1.2261 1.2111 1.1968
q∗ 123.2 123.1 122.9 122.5 122.3 122.2

p∗ 44.24 45.40 46.53 48.69 49.73 50.74
c = 20 T∗ 3.93 4.15 4.37 4.80 5.02 5.24

W∗ 1.3518 1.3122 1.2758 1.2109 1.1818 1.1547
q∗ 143.1 135.6 128.8 117.1 112.1 107.4

p∗ 45.71 46.38 47.01 48.21 48.78 49.33
λ = 83,952,300 T∗ 4.61 4.60 4.59 4.58 4.57 4.57

W∗ 1.1896 1.2078 1.2253 1.2584 1.2741 1.2891
q∗ 122.1 122.3 122.5 122.9 123.0 123.2

p∗ 113.17 81.82 61.46 37.87 30.76 25.45
α = 4 T∗ 5.95 5.38 4.94 4.30 4.07 3.89

W∗ 2.5835 1.9704 1.5462 1.0176 0.8475 0.7158
q∗ 94.5 104.5 113.9 130.7 138.1 144.7

p∗ 46.97 47.18 47.40 47.85 48.09 48.33
β = 0.2 T∗ 4.60 4.60 4.59 4.58 4.58 4.57

W∗ 1.2053 1.2174 1.2297 1.2548 1.2677 1.2808
q∗ 115.4 117.8 120.2 125.2 127.9 130.6

p∗ 47.68 47.66 47.64 47.60 47.59 47.57
γ = 3 T∗ 4.51 4.53 4.56 4.61 4.64 4.66

W∗ 1.2539 1.2500 1.2461 1.2382 1.2344 1.2305
q∗ 124.8 124.1 123.4 122.0 121.3 120.6
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From the results obtained in this sensitivity analysis, the following managerial insights
are deduced. The optimal selling price p∗ and the maximum profitability index W∗ increase
if the parameters λ or β increase, and they decrease when the other parameters increase.
The optimal cycle time T∗ increases if the parameters c or γ increase, and it does not
increase when the other parameters increase. Regarding the optimal lot size q∗, it increases
if any of the parameters K, λ, α, or β increase, and it decreases when the rest of the
parameters increase.

In addition, for all the optimal values, the changes regarding the price elasticity
parameter α are much larger than for the rest of the parameters. For example, note that
the profitability index increases to 2.58 if the parameter α decreases by 15%, and it falls to
0.72 if the parameter α increases by 15%. However, with respect to the unit purchasing cost
c, the profitability index moves between 1.35 and 1.15, and the changes are even smaller
regarding the other parameters. The unit purchasing cost c seems to be the second most
influential parameter in the optimal policy.

The ordering cost K is more influential in the optimal lot size q∗, which moves between
104.7 and 140.6, than in the optimal cycle time T∗, which moves between 4.57 and 4.60.
On the other hand, the holding cost h per unit and per unit time is more influential in the
optimal cycle time T∗, which moves between 4.00 and 5.37, than in the optimal lot size,
which moves between 122.2 and 123.2. Finally, note that the parameter γ seems to be less
influential in the optimal policy because all the optimal values change little when it moves
between −15% and 15%.

Now, to analyze the changes in percentage in the optimal policy regarding the initial
parameters of the model, we have evaluated the optimal values for changes in percentage
between −50% and 50% in each of the parameters, keeping all the others fixed. The results
are plotted in Figure 2.

Figure 2. Changes in percentage in p∗, q∗, W∗, and T∗ versus changes in percentage in each parameter.

The four graphs of Figure 2 illustrate how the parameter α, and the different parame-
ters K, h, λ, c, and γ, influence the optimal value of the selling price p∗, the profitability
index W∗, the optimal lot size q∗, and the optimal cycle time T∗. The graphs corresponding
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to the optimal selling price p∗ and the profitability index W∗ are designed in the following
way. As the changes in the parameter α are considerably more influential in p∗ and W∗

than the changes of the other parameters, these changes are plotted on the correspond-
ing graphs, using a more detailed numerical scale marked in the right vertical axis (R).
The other two graphs, corresponding to the optimal lot size q∗ and the optimal cycle time
T∗, are designed drawing the influence of all the changes without different numerical
scales. That is, although the changes in the parameter α are also more influential in q∗

and T∗ than the variations of the other parameters, all these changes are plotted on the
corresponding graphs using the same numerical scale. This numerical scale is represented
in both vertical axes (right axis (R) or left axis (L)).

After the α parameter, the unit purchasing cost c shows the largest changes in percent-
age in the optimal selling price p∗ and the maximum profitability index W∗. The rest of the
parameters are less influential, and the trends are similar in both optimal values. Finally,
the changes in percentage in the optimal lot size q∗ with respect to the ordering cost K,
and the changes in percentage in the optimal cycle time T∗ related to the holding cost h per
unit and per unit time, are also notable.

Next, to illustrate the results given in Section 5, the case of the isoelastic price-
dependent demand rate has been considered by setting γ = 0 in the previous numerical
example. The optimal solutions have been evaluated with the expressions (29)–(32) given
in Section 4. In addition, the basic case where the demand rate does not depend on the
stock level, that is β = γ = 0, has been evaluated with the expressions given in Table 2.
The results for these optimal policies are collected in Table 5. In order to compare results,
the optimal values for the general case with β = 0.2 and γ = 3 have also been included.
For this comparison, the value for the potential consumers has been kept at Λ = 300,
and the value of the scale parameter λ has been recalculated with the new value γ = 0.
Specifically, λ = 300× 204 = 48,000,000. Note that, for the basic case with β = γ = 0,
the inventory model is not profitable because W∗0 < 1.

Table 5. Maximum profitability policy in the models with isoelastic price-dependent demand.

Selling Price p∗0 Cycle Time T∗0 Profitability Index W∗
0 Lot Size q∗0

β = 0.2 and γ = 0 41.82 4.09 1.1500 137.5
β = 0 and γ = 0 37.22 4 0.9306 100

β = 0.2 and γ = 3 47.62 4.58 1.2422 122.7

To finish the computational results, the partial derivatives of the optimal solution
concerning the parameters K, h, λ, and c of the model with isoelastic price-dependent
demand (γ = 0) and β = 0.2, are evaluated with the expressions obtained in Section 5.
From them, the absolute and relative rates of change in the optimal values for p∗0 , T∗0 , W∗0 ,
and q∗0 were calculated. They are included in Table 6.

Table 6. Absolute and relative rates of change in p∗0 , q∗0 , W∗0 , and T∗0 with γ = 0.

x = K = 1000 x = h = 5 x = c = 20 x = λ = 48,000,000

∂p∗0 /∂x −0.0084 −2.09 0.94 0.000000021
(∂p∗0 /∂x)/(p∗0 /x) −0.20 −0.25 0.45 0.25

∂T∗0 /∂x 0 0.82 −0.20 0
(∂T∗0 /∂x)/(T∗0 /x) 0 1 −1 0

∂W∗0 /∂x −0.00023 −0.058 −0.032 0.000000006
(∂W∗0 /∂x)/(W∗0 /x) −0.20 −0.25 −0.55 0.25

∂q∗0 /∂x 0.14 0 −6.88 0
(∂q∗0 /∂x)/(q∗0 /x) 1 0 −1 0

Regarding the parameters K, h, λ, and c of the model, the unit purchasing cost c dis-
plays the largest relative rates of change for all the optimal values. Only the corresponding
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rates of change in the optimal cycle time T∗0 with respect to the parameter h, and in the
optimal lot size q∗0 concerning the parameter K, equal the relative rates of change associated
to the parameter c, but with opposite sign. In addition, the optimal cycle time T∗0 does not
depend on the parameters K nor λ, and the optimal lot size q∗0 does not depend on the
parameters h or λ. Finally, the respective effects of the parameters K, h, and λ are equal in
the optimal selling price p∗0 and in the maximum profitability index W∗0 .

7. Conclusions and Future Research

This paper analyzes an inventory system with a broad frame for the demand rate.
The joint effect of the selling price and the stock level on the demand is considered by using
a potential function on both variables in a multiplicative way. The decision variables are
the selling price, the depletion time, and the cycle time. The goal is the maximization of the
profitability index, defined as the income/expense ratio in the inventory.

The inventory policy that maximizes the profit per unit time often requires high
investment costs. In this case, the inventory manager perhaps prefers another policy with
slightly less profit but much less expense. Thus, the solution with a maximum profitability
index can be a more suitable option.

The optimal selling price can be obtained with a simple algorithm, which is easy to
apply. The optimal depletion time is always equal to the optimal cycle time, i.e., the re-
placement must be done when the stock is depleted. The optimal values for the maximum
profitability index, the cycle time, and the lot size can be evaluated in a closed-form from
the optimal selling price. The optimal policy carries a proper balance between the ordering
cost and the holding cost, which depends on the elasticity parameter of the demand corre-
sponding to the stock level. The profitability of the inventory system can be assured by an
inequality with the initial parameters.

For the special case of the model with isoelastic price-dependent demand, all optimal
values are given with closed expressions. They only depend on the initial parameters.
Moreover, they make it possible to establish, in a general way, the following managerial
insights for the inventory managers:

(i) The optimal values for the cycle time and the lot size do not depend on the scale
parameter of the demand rate, which is defined by the number of potential customers
per unit time.

(ii) The optimal cycle time does not change if the ordering cost varies. Similarly, the opti-
mal lot size does not change if the holding cost per unit and per unit time varies.

(iii) An increase in the holding cost per unit and per unit time (keeping all the other
parameters fixed) leads to a decrease in the optimal values for the selling price,
the cycle time and the maximum profitability index.

(iv) An increase in the ordering cost leads to an increase in the optimal values of the selling
price and the lot size. On the other hand, it also leads to a decrease in the maximum
profitability index.

(v) An increase in the unit purchasing cost leads to an increase in the optimal values of
the selling price and the cycle time. On the other hand, it also leads to a decrease in
the optimal values of the lot size and the maximum profitability index.

(vi) An increase in the scale parameter of the demand rate leads to an increase in the
optimal values of the selling price and the maximum profitability index.

Regarding the relative effect of the parameters on the optimal values of the model
with an isoelastic price-dependent demand, the following conclusions are drawn:

(i) The maximum profitability index is equally sensitive regarding both, the scale param-
eter of the demand rate and the holding cost per unit and per unit time. However,
it is less sensitive concerning the ordering cost. The sensitivity with respect to the
unit purchasing cost can be greater or lower than regarding the parameters K, h, or λ,
depending on the elasticity parameters of the demand rate with respect to the selling
price and the stock level.
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(ii) In the same way, the optimal selling price is equally sensitive regarding both the scale
parameter of the demand rate and the holding cost per unit and per unit time. How-
ever, it is less sensitive concerning the ordering cost. But now, the sensitivity with
respect to the unit purchasing cost is always greater than regarding the parameters K,
h, or λ.

(iii) The optimal cycle time is equally sensitive with respect to the unit purchasing cost
and the holding cost per unit and per unit time. As stated above, it does not depend
on the scale parameter of the demand rate or the ordering cost.

(iv) The optimal lot size is equally sensitive with respect to the unit purchasing cost and
the ordering cost. As stated above, it does not depend on the scale parameter of the
demand rate or the holding cost per unit and per unit time.

All these conclusions are based on the partial derivatives of the optimal policy with
respect to the parameters of the model. Therefore, they can be completely generalized for
all the practical applications of the model.

The closed expressions for all the optimal values have been also determined when the
demand rate is isoelastic price-dependent and does not depend on the stock level.

Computational results show that the elasticity parameter of the demand rate regarding
the selling price is the most influential parameter in the maximum profitability index and
in the optimal selling price. Decreases of 15% in this parameter can lead to increases of
more than 100% in the maximum profitability index or the optimal selling price.

Some possible extensions of the model that can be future research topics are: (i) to
consider other functions for the demand rate; (ii) to suppose a non-linear holding cost;
(iii) to incorporate discounts in the unit purchasing cost; (iv) to study the case of perish-
able or deteriorating items over time; and (v) to consider that the replenishment is not
instantaneous, and there exists a replenishment period with a constant production rate.
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Appendix A

In this appendix, the proofs of the lemmas, theorems and corollaries of this paper
are included.

Proof of Lemma 1. The function f (x) satisfies f (x) > 0 for all x > 0 and limx→0+ f (x) =
limx→∞ f (x) = ∞. Moreover, it is a differentiable function with derivative

f ′(x) =
−K(γ + p)α/(1−β)

(1− β)A2x(2−β)/(1−β)
+

(1− β)h
2− β

;

therefore,

x∗ =

(
(2− β)K(γ + p)α/(1−β)

(1− β)2 A2h

)(1−β)/(2−β)
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is the unique stationary point. Thus, the global minimum of the function f (x) is obtained
at point x∗, with

f (x∗) =
K(γ + p)α/(1−β)x∗

A2(x∗)(2−β)/(1−β)
+

(1− β)hx∗

2− β
=

(1− β)2hx∗

2− β
+

(1− β)hx∗

2− β

= (1− β)hx∗ = A3(γ + p)α/(2−β),

where

A3 = (1− β)h
(

(2− β)K
(1− β)2 A2h

)(1−β)/(2−β)

.

Now, using the expression (5) for A2, the value of A3 is

A3 =

(
(2− β)K

1− β

)(1−β)/(2−β)( h
λ

)1/(2−β)

,

and the proof is finished.

Proof of Lemma 2. Consider the functions u(p) = (γ + p)α/(2−β) and v(p) = (p− c)/A3
with p ∈ (c, ∞), where A3 is given by (12). It is clear that u(c) > v(c) = 0. Moreover,

as c + γ ≥
(

2−β
αA3

)(2−β)/(α−2+β)
, then

u′(p) =

(
α

2− β

)
(γ + p)(α−2+β)/(2−β) >

(
α

2− β

)
(γ + c)(α−2+β)/(2−β)

≥
(

α

2− β

)(
2− β

αA3

)
=

1
A3

= v′(p) > 0

for every p > c. As a consequence, u(p) is an increasing function on (c, ∞), and it is always
greater than v(p) for all p > c. Thus,

v(p)
u(p)

=
p− c

A3(γ + p)α/(2−β)
< 1

for every p > c. Therefore, the conditions p < c + A3(γ + p)α/(2−β) and W∗(p) < 1, for all
p ∈ (c, ∞), are satisfied, which ends the proof.

Proof of Theorem 1. It is clear that limp→∞ ψ(p) = −∞, and, from the condition (17),
we have

ψ(c) = (γ + c)α/(2−β) −
(

α

2− β

)
c(γ + c)−1+α/(2−β) +

c
A3

> (γ + c)α/(2−β) −
(

α

2− β

)
c
(

2− β

αA3

)
+

c
A3

= (γ + c)α/(2−β) > 0.

Taking into account that ψ′(p) < 0, the function ψ(p) is strictly decreasing, and the
equation ψ(p) = 0 has one, and only one, solution p∗ within the interval (c, ∞). Moreover,
as ψ(c) > 0 and limp→∞ ψ(p) = −∞, necessarily ψ(p) > 0 if p ∈ (c, p∗), and ψ(p) < 0 if
p ∈ (p∗, ∞), which proves (i).

On the other hand, the condition (17) ensures that 2− β > αA3(γ + c)(α−2+β)/(2−β),
and the point pU satisfies

pU >

(
α

α− 2 + β

)(
c + γA3(γ + c)(α−2+β)/(2−β)

)
> c.
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Then, we have

ψ(pU) = −(γ + pU)
−1+α/(2−β)

((
α− 2 + β

2− β

)
pU − γ

)
+

c
A3

= −(γ + pU)
−1+α/(2−β)

(
c(γ + c)1−α/(2−β)

A3

)
+

c
A3

< −(γ + c)−1+α/(2−β)

(
c(γ + c)1−α/(2−β)

A3

)
+

c
A3

= 0.

As a consequence, from assertion (i), it is sure that p∗ < pU . In a similar way, for pL,
we have

ψ(pL) = (γ + pL)
α/(2−β) −

(
α

2− β

)
pL(γ + pL)

−1+α/(2−β) +
c

A3

>

(
1− α

2− β

)
(γ + pL)

α/(2−β) +
c

A3
=

(
1− α

2− β

)(
(2− β)c

(α− 2 + β)A3

)
+

c
A3

= 0;

therefore, from assertion (i), it is sure that pL < p∗. Then, the assertion (ii) is proved.
Furthermore, the second derivative of the function ψ(p) is

ψ′′(p) = −
(

α(α− 2 + β)

(2− β)2

)
(γ + p)−3+α/(2−β)(γ + p + (−2 + α/(2− β))p)

= −
(

α(α− 2 + β)

(2− β)2

)
(γ + p)−3+α/(2−β)

(
γ +

(
α− 2 + β

2− β

)
p
)

,

and it satisfies ψ′′(p) < 0 for all p ∈ (c, ∞).
We now prove that the succession {yn}∞

n=1 is strictly decreasing and bounded below
by p∗. Indeed, as ψ(y0) = ψ(pU) < 0, it is sure that y0 > p∗. Taking into account that
ψ′(y0) < 0, we have

y1 = y0 −
ψ(y0)

ψ′(y0)
< y0.

Moreover, from the Taylor theorem, there exists a point η ∈ (y1, yo) with

ψ(y1) = ψ(y0) + ψ′(y0)(y1 − y0) + ψ′′(η)

(
(y1 − y0)

2

2

)
= ψ′′(η)

(
(y1 − y0)

2

2

)
< 0.

Hence, from assertion (i), it is verified that p∗ < y1 < y0. In a similar way, if p∗ <
yi−1 < yi−2, a similar reasoning proves that p∗ < yi < yi−1, and the sequence {yi}∞

i=0 is
strictly decreasing and bounded below by p∗. Then, the sequence {yi}∞

i=0 is convergent and,
if L is the value of its limit, that is L = limi→∞ yi, taking into account the definition for yi, it
has to satisfy L = L− ψ(L)

ψ′(L) , which implies that ψ(L) = 0. As p∗ is the unique point such
that ψ(p∗) = 0, then L = p∗. Thus, the assertion (iii) is proved. Moreover, note that we are
using Newton’s method for solving equations, with ψ(y0) = ψ(pU) < 0 and ψ′′(y0) < 0.
Then, the convergence towards the only root of the equation ψ(p) = 0 is monotonous,
and of quadratic order (see, for example, Householder [29], Theorem 4.2.4).

Proof of Theorem 2.

(i) As ψ(p∗) = 0, from (18), it follows that:

c + A3(γ + p∗)α/(2−β) =

(
αA3

2− β

)
p∗(γ + p∗)−1+α/(2−β);
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therefore, the maximum profitability index W∗ can be evaluated with the expression
(14) as

W∗ = W∗(p∗) =
p∗

c + A3(γ + p∗)α/(2−β)
=

2− β

αA3(γ + p∗)−1+α/(2−β)
.

Then, using the expression (12) for A3, the maximum profitability index is

W∗ =

(
(2− β)(1− β)1−βλ

α2−βhK1−β(γ + p∗)α−2+β

)1/(2−β)

.

(ii) The optimal cycle time, which coincides with the optimal depletion time, can be
obtained using the expression (13) with p = p∗, and the expression (5) for A2, which
leads to

T∗ = τ∗ =

(
(2− β)1−βK1−β(γ + p∗)α

(1− β)3−2βh1−βλ

)1/(2−β)

.

(iii) The optimal lot size q∗ is given by the expression (4) with the values p∗, T∗ = τ∗, and
the expression (5) for A2, obtaining

q∗ = A2

(
(τ∗)1/(1−β)

(γ + p∗)α/(1−β)

)
=

(
(2− β)Kλ

(1− β)h(γ + p∗)α

)1/(2−β)

.

(iv) From (ii), and using the expression (3) for A1, the optimal holding cost in each cycle,
given by (2), is evaluated as

H(p∗, T∗, T∗) = A1

(
(T∗)(2−β)/(1−β)

(γ + p∗)α/(1−β)

)
=

K
1− β

,

which proves assertion (iv).

Proof of Lemma 3. The inventory system is profitable if, and only if, W∗ > 1 which is
equivalent to the condition (26) for the optimal selling price p∗. Moreover, from Theorem 1,

it is equivalent to the condition ψ

((
2−β
αA3

)(2−β)/(α−2+β)
− γ

)
< 0, where ψ(p) is given by

(18) or, alternatively,

ψ(p) = −(γ + p)−1+α/(2−β)
((

α− 2 + β

2− β

)
p− γ

)
+

c
A3

.

Then, the condition (26) is satisfied if, and only if, the following equivalent inequalities
are true:

c
A3

<

(
2− β

αA3

)((
α− 2 + β

2− β

)(
2− β

αA3

)(2−β)/(α−2+β)

− αγ

2− β

)

⇔ α(c + γ)

α− 2 + β
<

(
2− β

αA3

)(2−β)/(α−2+β)

⇔
(

α(c + γ)

α− 2 + β

)(α−2+β)/(2−β)

<
2− β

αA3

⇔ A3 <

(
2− β

α

)(
α− 2 + β

α(c + γ)

)(α−2+β)/(2−β)

.

Now, by using the expression (12) for A3, the above inequalities are equivalent to
these other ones:
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(
(2− β)K

1− β

)(1−β)/(2−β)( h
λ

)1/(2−β)

<

(
2− β

α

)(
α− 2 + β

α(c + γ)

)(α−2+β)/(2−β)

⇔
(

hK1−β(c + γ)α−2+β

λ

)1/(2−β)

<

(
(2− β)1/(2−β)(1− β)(1−β)/(2−β)(α− 2 + β)(α−2+β)/(2−β)

αα/(2−β)

)

⇔ hK1−β(c + γ)α−2+β

λ
<

(2− β)(1− β)1−β(α− 2 + β)α−2+β

αα
⇔ hK1−β(c + γ)α−2+β

λ
< ∆,

where ∆ is given by the expression (28). Thus, the proof is complete.

Proof of Corollary 1. First of all, the partial derivatives of the auxiliary parameter A3,
given by the expression (12), are calculated by using logarithmic differentiation, as follows:

∂A3

∂K
=

(
∂ ln A3

∂K

)
A3 =

(1− β)A3

(2− β)K
> 0,

∂A3

∂h
=

(
∂ ln A3

∂h

)
A3 =

A3

(2− β)h
> 0,

∂A3

∂λ
=

(
∂ ln A3

∂λ

)
A3 =

−A3

(2− β)λ
< 0,

and ∂A3
∂c = ∂A3

∂γ = 0 because A3 does not depend on c or γ.
Now, to derive the optimal selling price p∗, with respect to the parameter K, we take

into account that the optimal selling price p∗ satisfies (18), i.e., ψ(p∗) = 0. Thus, p∗ is
implicitly defined by the equation Ψ(p∗, K) = 0 being

Ψ(p, K) = (γ + p)α/(2−β) −
(

α

2− β

)
p(γ + p)−1+α/(2−β) +

c
A3

,

with A3 dependent on K.
Then, by using the implicit differentiation theorem (see, for example, Krantz and

Parks [30], Theorem 1.3.1), and taking into account the expression (19) for ψ′(p), we have

∂p∗

∂K
= −

∂Ψ(p,K)
∂K

∣∣∣
(p∗ ,K)

∂Ψ(p,K)
∂p

∣∣∣
(p∗ ,K)

=
c
(

∂A3
∂K

)
A2

3ψ′(p∗)

=
−(1− β)(2− β)c

α(α + β− 2)A3Kp∗(γ + p∗)−2+α/(2−β)
< 0.

Similarly, for the other parameters we obtain:

∂p∗

∂h
=

−(2− β)c

α(α + β− 2)A3hp∗(γ + p∗)−2+α/(2−β)
< 0,

∂p∗

∂λ
=

(2− β)c

α(α + β− 2)A3λp∗(γ + p∗)−2+α/(2−β)
> 0,

∂p∗

∂c
= −

∂Ψ(p,c)
∂c

ψ′(p∗)
=

(2− β)2

α(α + β− 2)A3 p∗(γ + p∗)−2+α/(2−β)
> 0,
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∂p∗

∂γ
=

α(γ + p∗)−2+α/(2−β)

ψ′(p∗)(2− β)2 [(α− 2(2− β))p∗ − (2− β)γ]

=
2− β

(α + β− 2)p∗
(γ + (2− α/(2− β))p∗).

Then, ∂p∗
∂γ < 0 if γ + (2− α/(2− β))p∗ < 0 . Otherwise, ∂p∗

∂γ ≥ 0.

All these inequalities prove the theses of the corollary.

Proof of Corollary 2. Taking into account the expression (20) for W∗ and the partial deriva-
tives of p∗, by using logarithmic differentiation, we have

∂W∗

∂K
=

(
∂ ln W∗

∂K

)
W∗ =

(
W∗

2− β

)−(1− β)

K
−

(α− 2 + β)
(

∂p∗
∂K

)
γ + p∗


=

(
(1− β)W∗

(2− β)K

)(
−1 +

(2− β)c

αA3 p∗(γ + p∗)−1+α/(2−β)

)
.

Moreover, as ψ(p∗) = 0, we have

−αA3 p∗(γ + p∗)−1+α/(2−β) + (2− β)c = −A3(2− β)(γ + p∗)α/(2−β).

Therefore,
∂W∗

∂K
=
−(1− β)(γ + p∗)W∗

αKp∗
< 0,

and W∗ decreases as K increases.
In a similar way,

∂W∗

∂h
=

(
∂ ln W∗

∂h

)
W∗ =

(
W∗

2− β

)−1
h
−

(α− 2 + β)
(

∂p∗
∂h

)
γ + p∗


=

(
W∗

(2− β)h

)(
−1 +

(2− β)c

αA3 p∗(γ + p∗)−1+α/(2−β)

)
< 0,

∂W∗

∂λ
=

(
∂ ln W∗

∂λ

)
W∗ =

(
W∗

2− β

) 1
λ
−

(α− 2 + β)
(

∂p∗
∂λ

)
γ + p∗


=

(
W∗

(2− β)λ

)(
1− (2− β)c

αA3 p∗(γ + p∗)−1+α/(2−β)

)
> 0,

∂W∗

∂c
=

(
∂ ln W∗

∂c

)
W∗ =

(
W∗

2− β

)−(α− 2 + β)
(

∂p∗
∂c

)
γ + p∗


=

−(2− β)W∗

αA3 p∗(γ + p∗)−1+α/(2−β)
< 0,
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∂W∗

∂γ
=

(
∂ ln W∗

∂γ

)
W∗ =

(
W∗(α− 2 + β)

2− β

)−
(

1 + ∂p∗
∂γ

)
γ + p∗


=

(
−W∗(α− 2 + β)

(2− β)(γ + p∗)

)(
1 +

(
(2− β)

(α− 2 + β)p∗

)
(γ + (2− α/(2− β))p∗)

)
=

(
W∗

(2− β)p∗(γ + p∗)

)
(−(2− β)γ− (2− β)p∗) =

−W∗

p∗
< 0.

All these inequalities prove the theses of the corollary.

Proof of Corollary 3. Taking into account the expression (21) for T∗ and the partial deriva-
tives of p∗, by using logarithmic differentiation, we have

∂T∗

∂K
=

(
∂ ln T∗

∂K

)
T∗ =

(
T∗

2− β

)1− β

K
+

α
(

∂p∗
∂K

)
γ + p∗


=

(
(1− β)T∗

(2− β)K

)(
1− (2− β)c

(α− 2 + β)A3 p∗(γ + p∗)−1+α/(2−β)

)
.

Moreover, as ψ(p∗) = 0, we have

(2− β)c = αA3 p∗(γ + p∗)−1+α/(2−β) − A3(2− β)(γ + p∗)α/(2−β)

= A3(γ + p∗)−1+α/(2−β)[(α− 2 + β)p∗ − (2− β)γ].

Therefore,

∂T∗

∂K
=

(
(1− β)T∗

(2− β)K

)(
1− (α− 2 + β)p∗ − (2− β)γ

(α− 2 + β)p∗

)
=

(1− β)γT∗

(α− 2 + β)Kp∗
> 0,

and T∗ increases as K increases.
In a similar way,

∂T∗

∂h
=

(
∂ ln T∗

∂h

)
T∗ =

(
T∗

2− β

)−1− β

h
+

α
(

∂p∗
∂h

)
γ + p∗


=

(
T∗

(2− β)h

)(
−(1− β)− (2− β)c

(α− 2 + β)A3 p∗(γ + p∗)−1+α/(2−β)

)
< 0,

∂T∗

∂λ
=

(
∂ ln T∗

∂λ

)
T∗ =

(
T∗

2− β

)− 1
λ
+

α
(

∂p∗
∂λ

)
γ + p∗


=

(
T∗

(2− β)λ

)(
−1 +

(2− β)c

(α− 2 + β)A3 p∗(γ + p∗)−1+α/(2−β)

)

=
−γT∗

(α− 2 + β)λp∗
< 0,
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∂T∗

∂c
=

(
∂ ln T∗

∂c

)
T∗ =

(
T∗

2− β

)α
(

∂p∗
∂c

)
γ + p∗


=

(2− β)T∗

(α− 2 + β)A3 p∗(γ + p∗)−1+α/(2−β)
> 0,

and

∂T∗

∂γ
=

(
∂ ln T∗

∂γ

)
T∗ =

αT∗

(2− β)(γ + p∗)

(
1 +

∂p∗

∂γ

)
=

αT∗

(2− β)(γ + p∗)

(
1 +

2− β

(α− 2 + β)p∗
(γ + (2− α/(2− β))p∗)

)
=

αT∗

(2− β)(γ + p∗)

(
(2− β)(γ + p∗)
(α− 2 + β)p∗

)
=

αT∗

(α− 2 + β)p∗
> 0.

All these inequalities prove the theses of the corollary.

Proof of Corollary 4. Taking into account the expression (22) for q∗ and the partial deriva-
tives of p∗, by using logarithmic differentiation, we have

∂q∗

∂K
=

(
∂ ln q∗

∂K

)
q∗ =

(
q∗

2− β

) 1
K
−

α
(

∂p∗
∂K

)
γ + p∗


=

(
q∗

(2− β)K

)(
1 +

(1− β)(2− β)c

(α− 2 + β)A3 p∗(γ + p∗)−1+α/(2−β)

)
> 0.

Then, ∂q∗
∂K > 0 and q∗ increases as K increases. In a similar way,

∂q∗

∂h
= q∗

(
∂ ln q∗

∂h

)
=

(
q∗

2− β

)−1
h
−

α
(

∂p∗
∂h

)
γ + p∗


=

(
q∗

(2− β)h

)(
−1 +

(2− β)c

(α− 2 + β)A3 p∗(γ + p∗)−1+α/(2−β)

)
< 0,

∂q∗

∂λ
= q∗

(
∂ ln q∗

∂λ

)
=

(
q∗

2− β

) 1
λ
−

α
(

∂p∗
∂λ

)
γ + p∗


=

(
q∗

(2− β)λ

)(
1− (2− β)c

(α− 2 + β)A3 p∗(γ + p∗)−1+α/(2−β)

)
> 0,

∂q∗

∂c
= q∗

(
∂ ln q∗

∂c

)
=

(
q∗

2− β

)−α
(

∂p∗
∂c

)
γ + p∗


=

(
−(2− β)q∗

(α− 2 + β)A3 p∗(γ + p∗)−1+α/(2−β)

)
< 0,

and
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∂q∗

∂γ
= q∗

(
∂ ln q∗

∂γ

)
=
−αq∗

(
1 + ∂p∗

∂γ

)
(2− β)(γ + p∗)

=

(
−αq∗

(2− β)(γ + p∗)

)(
1 +

(
(2− β)(γ + 2p∗)− αp∗

(α− 2 + β)p∗

))
=

(
−αq∗

(2− β)(γ + p∗)

)(
1 +

(2− β)(γ + p∗)
(α− 2 + β)p∗

− 1
)

=
−αq∗

(α− 2 + β)p∗
< 0.

All these inequalities prove the theses of the corollary.
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