30,436 research outputs found

    Converging shocks in elastic-plastic solids

    Get PDF
    We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e = e_(s)(I_1)+e_(h)(ρ,ς), where e_(s) accounts for shear through the first invariant of the Cauchy–Green tensor, and e_(h) represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., e_(h) = e_(h)(ρ), with a power-law dependence e_(h) ∝ ρ_(α), shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M ∝ [log(1/R)]^α, independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M ∝ R^(−(s−1)) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part eh is that of an ideal gas, is also tested, recovering the strong-shock limit M∝R^(−(s−1)/n(Îł)) originally derived by Whitham for perfect gases, where Îł is inherently related to the maximum compression ratio that the material can reach, (Îł+1)/(γ−1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the hydrostatic part of the energy essentially commands the strong-shock behavior, the shear modulus and yield stress modify the compression ratio and velocity of the shock far from the axis or origin. A characterization of the elastic-plastic transition in converging shocks, which involves an elastic precursor and a plastic compression region, is finally exposed

    Proposal for a Supersymmetric Standard Model

    Full text link
    The fact that neutrinos are massive suggests that the minimal supersymmetric standard model (MSSM) might be extended in order to include three gauge-singlet neutrino superfields with Yukawa couplings of the type H2LÎœcH_2 L \nu^c. We propose to use these superfields to solve the ÎŒ\mu problem of the MSSM without having to introduce an extra singlet superfield as in the case of the next-to-MSSM (NMSSM). In particular, terms of the type ÎœcH1H2\nu^c H_1 H_2 in the superpotential may carry out this task spontaneously through sneutrino vacuum expectation values. In addition, terms of the type (Îœc)3(\nu^c)^3 avoid the presence of axions and generate effective Majorana masses for neutrinos at the electroweak scale. On the other hand, these terms break lepton number and R-parity explicitly implying that the phenomenology of this model is very different from the one of the MSSM or NMSSM. For example, the usual neutralinos are now mixed with the neutrinos. For Dirac masses of the latter of order 10−410^{-4} GeV, eigenvalues reproducing the correct scale of neutrino masses are obtained.Comment: 9 pages, latex, title modified. Final version published in PR

    Continuum variational and diffusion quantum Monte Carlo calculations

    Full text link
    This topical review describes the methodology of continuum variational and diffusion quantum Monte Carlo calculations. These stochastic methods are based on many-body wave functions and are capable of achieving very high accuracy. The algorithms are intrinsically parallel and well-suited to petascale computers, and the computational cost scales as a polynomial of the number of particles. A guide to the systems and topics which have been investigated using these methods is given. The bulk of the article is devoted to an overview of the basic quantum Monte Carlo methods, the forms and optimisation of wave functions, performing calculations within periodic boundary conditions, using pseudopotentials, excited-state calculations, sources of calculational inaccuracy, and calculating energy differences and forces

    Anisotropic response of the moving vortex lattice in superconducting Mo(1−x)_{(1-x)}Gex_{x} amorphous films

    Get PDF
    We have performed magnetic susceptibility measurements in Mo(1−x)_{(1-x)}Gex_x amorphous thin films biased with an electrical current using anisotropic coils. We tested the symmetry of the vortex response changing the relative orientation between the bias current and the susceptibility coils. We found a region in the DC current - temperature phase diagram where the dynamical vortex structures behave anisotropically. In this region the shielding capability of the superconducting currents measured by the susceptibility coils is less effective along the direction of vortex motion compared to the transverse direction. This anisotropic response is found in the same region where the peak effect in the critical current is developed. On rising temperature the isotropic behavior is recovered.Comment: 10 pages, 4 figure

    Experimental and theoretical studies of sequence effects on the fluctuation and melting of short DNA molecules

    Get PDF
    Understanding the melting of short DNA sequences probes DNA at the scale of the genetic code and raises questions which are very different from those posed by very long sequences, which have been extensively studied. We investigate this problem by combining experiments and theory. A new experimental method allows us to make a mapping of the opening of the guanines along the sequence as a function of temperature. The results indicate that non-local effects may be important in DNA because an AT-rich region is able to influence the opening of a base pair which is about 10 base pairs away. An earlier mesoscopic model of DNA is modified to correctly describe the time scales associated to the opening of individual base pairs well below melting, and to properly take into account the sequence. Using this model to analyze some characteristic sequences for which detailed experimental data on the melting is available [Montrichok et al. 2003 Europhys. Lett. {\bf 62} 452], we show that we have to introduce non-local effects of AT-rich regions to get acceptable results. This brings a second indication that the influence of these highly fluctuating regions of DNA on their neighborhood can extend to some distance.Comment: To be published in J. Phys. Condensed Matte

    Real-time Monocular Object SLAM

    Get PDF
    We present a real-time object-based SLAM system that leverages the largest object database to date. Our approach comprises two main components: 1) a monocular SLAM algorithm that exploits object rigidity constraints to improve the map and find its real scale, and 2) a novel object recognition algorithm based on bags of binary words, which provides live detections with a database of 500 3D objects. The two components work together and benefit each other: the SLAM algorithm accumulates information from the observations of the objects, anchors object features to especial map landmarks and sets constrains on the optimization. At the same time, objects partially or fully located within the map are used as a prior to guide the recognition algorithm, achieving higher recall. We evaluate our proposal on five real environments showing improvements on the accuracy of the map and efficiency with respect to other state-of-the-art techniques

    Clustering transition in a system of particles self-consistently driven by a shear flow

    Get PDF
    We introduce a simple model of active transport for an ensemble of particles driven by an external shear flow. Active refers to the fact that the flow of the particles is modified by the distribution of particles itself. The model consists in that the effective velocity of every particle is given by the average of the external flow velocities felt by the particles located at a distance less than a typical radius, RR. Numerical analysis reveals the existence of a transition to clustering depending on the parameters of the external flow and on RR. A continuum description in terms of the number density of particles is derived, and a linear stability analysis of the density equation is performed in order to characterize the transitions observed in the model of interacting particles.Comment: 11 pages, 2 figures. To appear in PR
    • 

    corecore