90 research outputs found
Coherent Measures of Risk from a General Equilibrium Perspective
Coherent measures of risk defined by the axioms of monotonicity, subadditivity, positive homogeneity, and translation invariance are recent tools in risk management to assess the amount of risk agents are exposed to. If they also satisfy law invariance and comonotonic additivity, then we get a subclass of them: spectral measures of risk. Expected shortfall is a well-known spectral measure of risk is. We investigate the above mentioned six axioms using tools from general equi- librium (GE) theory. Coherent and spectral measures of risk are compared to the natural measure of risk derived from an exchange economy model, that we call GE measure of risk. We prove that GE measures of risk are coherent measures of risk. We also show that spectral measures of risk can be represented by GE measures of risk only under stringent conditions, since spectral measures of risk do not take the regulated entity's relation to the market portfolio into account. To give more insights, we characterize the set of GE measures of risk.Coherent Measures of Risk, General Equilibrium Theory, Exchange Economies, Asset Pricing
Balancedness Conditions for Exact Games
We provide two new characterizations of exact games. First, a game is exact if and only if it is exactly balanced; and second, a game is exact if and only if it is totally balanced and overbalanced. The condition of exact balancedness is identical to the one of balancedness, except that one of the balancing weights may be negative while for overbalancedness one of the balancing weights is required to be non-positive and no weight is put on the grand coalition. Exact balancedness and overbalancedness are both easy to formulate conditions with a natural game-theoretic interpretation and are shown to be useful in applications. Using exact balancedness we show that exact games are convex for the grand coalition and that the classes of convex and totally exact games coincide. We provide an example of a game that is totally balanced and convex for the grand coalition, but not exact. Finally we relate classes of balanced, totally balanced, convex for the grand coalition, exact, totally exact, and convex games to one another.operations research and management science;
Stable Allocations of Risk
The measurement and the allocation of risk are fundamental problems of portfolio management. Coherent measures of risk provide an axiomatic approach to the former problem. In an environment given by a coherent measure of risk and the various portfolios’ realization vectors, risk allocation games aim at solving the second problem: How to distribute the diversification benefits of the various portfolios? Understanding these cooperative games helps us to find stable, efficient, and fair allocations of risk. We show that the class of risk allocation and totally balanced games coincide hence a stable allocation of risk is always possible. When the aggregate portfolio is riskless: risk is limited to subportfolios, the class of risk allocation games coincides with the class of exact games. As in exact games any subcoalition may be subject to marginalization even in core allocations, our result further emphasizes the responsibility in allocating risk.microeconomics ;
Coherent Measures of Risk from a General Equilibrium Perspective
Coherent measures of risk defined by the axioms of monotonicity, subadditivity, positive homogeneity, and translation invariance are recent tools in risk management to assess the amount of risk agents are exposed to. If they also satisfy law invariance and comonotonic additivity, then we get a subclass of them: spectral measures of risk. Expected shortfall is a well-known spectral measure of risk is. We investigate the above mentioned six axioms using tools from general equilibrium (GE) theory. Coherent and spectral measures of risk are compared to the natural measure of risk derived from an exchange economy model, that we call GE measure of risk. We prove that GE measures of risk are coherent measures of risk.We also show that spectral measures of risk can be represented by GE measures of risk only under stringent conditions, since spectral measures of risk do not take the regulated entity’s relation to the market portfolio into account. To give more insights, we characterize the set of GE measures of risk.microeconomics ;
Convex and exact games with non-transferable utility
We generalize exactness to games with non-transferable utility (NTU). A game is exact if for each coalition there is a core allocation on the boundary of its payoff set.
Convex games with transferable utility are well-known to be exact. We consider ve generalizations of convexity in the NTU setting. We show that each of ordinal, coalition merge, individual merge and marginal convexity can be uni¯ed under NTU exactness. We provide an example of a cardinally convex game which is not NTU exact. Finally, we relate the classes of Π-balanced, totally Π-balanced, NTU exact, totally NTU exact, ordinally convex, cardinally convex, coalition merge convex, individual merge convex and marginal convex games to one another
The Attendance About Sport Events of the 50+ Cohorts
The population of Hungary, similar to the European countries, shows an ageing tendency. The life expectancy at birth and after 65 is growing, as a consequence of which the increased years of life can become meaty besides adequate life quality. An important related area is activity and sports. Accordingly, it can become a priority task to involve the older generations into sport consumption and sport tourism. In their study the authors examine the connections between the attitudes toward sports and sport tourism among the Hungarian population with particular regard to the 50-70 years old people. Based on the results of the survey, carried out within the framework of the project EFOP-3.6.2-16-2017-003: “Cooperative Research Network in Economy of Sport, Recreation and Health”, focusing on the sport consumption habits of the Hungarian population the sport-attitudes and travels by reason of sport of the elderly cohorts are demonstrated. On this basis proposals, sports and public health programmes and sports tourism projects can be drafted, which could level up the consumption and activities of the elderly to a higher level
Convex and Exact Games with Non-transferable Utility
We generalize exactness to games with non-transferable utility (NTU). In an exact game for each coalition there is a core allocation on the boundary of its payoff set. Convex games with transferable utility are well-known to be exact. We study five generalizations of convexity in the NTU setting. We show that each of ordinal, coalition merge, individual merge and marginal convexity can be unified under NTU exactness. We provide an example of a cardinally convex game which is not NTU exact. Finally, we relate the classes of \Pi-balanced, totally \Pi-balanced, NTU exact, totally NTU exact, ordinally convex, cardinally convex, coalition merge convex, individual merge convex and marginal convex games to one another.NTU Games, Exact Games, Convex Games
Convex and Exact Games with Non-transferable Utility
We generalize exactness to games with non-transferable utility (NTU). In an exact game for each coalition there is a core allocation on the boundary of its payoff set. Convex games with transferable utility are well-known to be exact. We study five generalizations of convexity in the NTU setting. We show that each of ordinal, coalition merge, individual merge and marginal convexity can be unified under NTU exactness. We provide an example of a cardinally convex game which is not NTU exact. Finally, we relate the classes of II-balanced, totally II-balanced, NTU exact, totally NTU exact, ordinally convex, cardinally convex, coalition merge convex, individual merge convex and marginal convex games to one another.operations research and management science;
- …