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Abstract

The measurement and the allocation of risk are fundamental prob-
lems of portfolio management. Coherent measures of risk provide an
axiomatic approach to the former problem. In an environment given
by a coherent measure of risk and the various portfolios’ realization
vectors, risk allocation games aim at solving the second problem: How
to distribute the diversification benefits of the various portfolios? Un-
derstanding these cooperative games helps us to find stable, efficient,
and fair allocations of risk.

We show that the class of risk allocation and totally balanced
games coincide hence a stable allocation of risk is always possible.
When the aggregate portfolio is riskless: risk is limited to subport-
folios, the class of risk allocation games coincides with the class of
exact games. As in exact games any subcoalition may be subject to
marginalization even in core allocations, our result further emphasizes
the responsibility in allocating risk.

Keywords: Coherent Measures of Risk, Risk Allocation Games, To-
tally Balanced Games, Exact Games

JEL Classification: C71, G10

∗We are grateful to conference participants in Warwick, Kos, Madrid and Budapest for
helpful comments.

†Department of Economics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht,
The Netherlands. E-mail:P.Csoka@algec.unimaas.nl.

‡Department of Economics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht,
The Netherlands. E-mail:P.Herings@algec.unimaas.nl. The author would like to thank the
Netherlands Organisation for Scientific Research (NWO) for financial support.

§Department of Economics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht,
The Netherlands. E-mail:L.Koczy@algec.unimaas.nl. The author would like to thank
funding by the European Union under the Marie Curie Intra-European Fellowship MEIF-
CT-2004-011537.

1



1 Introduction

The value of an investment portfolio is subject to all kinds of uncertain events.
The fact that its future value can be less than in the most favorable state of
the world could be seen as a risk investors face. Firms, banks, or insurance
companies (which can also be seen as portfolios) face risk and regulators
may require them to hold cash reserves as a cushion against default – this
rather unfavorable state of nature – with the precise amounts determined by
a measure of risk.

The literature knows of numerous possible ways to measure risk; lately
interest shifted to coherent measures of risk (Artzner, Delbaen, Eber, and
Heath, 1999) defined by four axioms: monotonicity, subadditivity, positive
homogeneity, and translation invariance. These axioms have been shown to
be compatible with a natural general equilibrium approach to measure risk
(Csóka, Herings, and Kóczy, 2007b).

Of these axioms, subadditivity expresses that the risk of an aggregate
portfolio should not exceed the total risk of the individual portfolios. Risk
allocation then addresses the distribution of the diversification benefits; risk
allocation games (Denault, 2001) are transferable utility games defined to
this purpose. We separate the risk environment specifying the individual
portfolios’ realization vectors of discrete random variables and a coherent
measure of risk, a real valued function on the realization vectors, from the
derived cooperative game that we call risk allocation game. We identify risk
allocation games with a very special class of TU-games: totally balanced
games.

A totally balanced game is a cooperative game having a non-empty core
in all of its subgames. Totally balanced games arise from a wide range of
applications. They coincide with market games (Shapley and Shubik, 1969);
also with a special case of market games with a continuum of indivisible
commodities: cooperation in fair division (Legut, 1990); they are equivalent
to a class of maximum flow problems (Kalai and Zemel, 1982a); and also
to permutation games of less than four players (Tijs, Parthasarathy, Potters,
and Prassad, 1984). Moreover, totally balanced games are generated by linear
production games (Owen, 1975), generalized network problems (Kalai and
Zemel, 1982b), and controlled mathematical programming problems (Dubey
and Shapley, 1984).

We show that the class of risk allocation games coincides with the class
of totally balanced games, that is all risk allocation games are totally bal-
anced and all totally balanced games can be generated by a risk allocation
game with a properly specified risk environment. This result ensures that a
regulator can always allocate risk in a stable way. No matter how the risk
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environment changes, there is always a core element.
We next provide a linear program such that its optimal objective value can

be used to determine whether a given cooperative game is a risk allocation
game or not. If the game is a risk allocation game, then an optimal solution
to the linear program yields a risk environment that generates the game. We
then show how to use the linear program to characterize all risk environments
that generate a given totally balanced game.

At last, we focus on games where only the distribution of values is uncer-
tain, while the value of the aggregate portfolio is constant over all states of
nature. This case is relevant for situations where the risk of the aggregate
portfolio is low compared to the risk involved in the individual portfolios. We
show that the class of risk allocation games with no aggregate uncertainty
coincides with the class of exact games (Schmeidler, 1972). As evidenced by
the previous paragraphs, there are many applications giving rise to the class
of totally balanced games; to the best of our knowledge, risk allocation with
no aggregate uncertainty is the first application that leads to the class of
exact games.

The fact that each risk allocation game is exact implies that for each
coalition there is a core element such that the coalition only gets its stand-
alone value. This means that in the case of no aggregate uncertainty, this
coalition does not necessarily benefit from the diversification opportunities
offered by the aggregate portfolio. As a consequence, the regulator has a
high level of discretion in allocating the risk to the individual portfolios.

The structure of the paper is as follows. First we introduce coherent
measures of risk, transferable utility games, and risk allocation games. In
Section 3 we prove that the class of risk allocation games coincides with the
class of totally balanced games and investigate our constructive proof by
linear programming. In Section 4 we show that the class of risk allocation
games with no aggregate uncertainty coincides with the class of exact games.
In Section 5 we conclude.

2 Preliminaries

2.1 Coherent Measures of Risk

Consider the set RS of realization vectors, where S denotes the number
of states of nature. State of nature s occurs with probability ps > 0 and∑S

s=1 ps = 1. The vector X ∈ RS represents a portfolio’s (firm’s, insurance
company’s, bank’s, etc.) possible profit and loss realizations on a common
chosen future time horizon, say at t = 1. The amount Xs is the portfolio’s
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payoff in state of nature s. Negative values of Xs correspond to losses. The
inequality Y ≥ X means that Ys ≥ Xs for all s = 1, . . . , S.

A measure of risk is a function ρ : RS → R measuring the risk of a port-
folio from the perspective of the present (t = 0). It is the minimal amount
of cash the regulated agent has to add to his portfolio, and to invest in a
reference instrument today, such that it ensures that the risk involved in the
portfolio is acceptable to the regulator. We assume that the reference instru-
ment has payoff 1 in each state of nature at t = 1, thus its realization vector
is 1S = (1, . . . , 1)>. The reference instrument is riskless in the “classical
sense,” having no uncertainty in its payoffs. It is most natural to think of it
as a zero coupon bond. The price of the reference instrument is denoted by
δ ∈ R+, where R+ = [0,∞). We adjust the definition of coherent measures
of risk to the discrete case with realization vectors as follows.

Definition 2.1. A function ρ : RS → R is called a coherent measure of risk
(Artzner et al., 1999) if it satisfies the following axioms.

1. Monotonicity : for all X, Y ∈ RS such that Y ≥ X, we have ρ(Y ) ≤
ρ(X).

2. Subadditivity : for all X, Y ∈ RS, we have ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

3. Positive homogeneity : for all X ∈ RS and h ∈ R+, we have ρ(hX) =
hρ(X).

4. Translation invariance: for all X ∈ RS and a ∈ R, we have ρ(X +
a1S) = ρ(X)− δa.

Acerbi (2002) treats a subclass of coherent measures of risk: spectral mea-
sures of risk. The definition of spectral measures of risk with equiprobable
outcomes, i.e. p1 = · · · = pS = 1/S, is as follows.

Let us introduce the ordered statistics Xs:S given by the ordered values of
the S-tuple X1, . . . , XS, that is {X1:S, . . . , XS:S} = {X1, . . . , XS} and X1:S ≤
X2:S ≤ · · · ≤ XS:S.

Definition 2.2. Let the outcomes be equiprobable. Consider a vector φ ∈
RS. The measure of risk Mφ : RS → R defined by

Mφ(X) = −δ

S∑
s=1

φsXs:S (1)

is a spectral measure of risk if φ ∈ RS satisfies the conditions
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1. Nonnegativity: φs ≥ 0 for all s = 1, . . . , S,

2. Normalization:
∑S

s=1 φs = 1,

3. Monotonicity : φs is non-increasing, that is φs1 ≥ φs2 if s1 < s2 and
s1, s2 ∈ {1, . . . , S}.

Spectral measures of risk are discounted weighted average losses, with
non-increasing weights, with the highest weight on the worst outcome. The
weight vector φ is the so-called risk spectrum, the “attitude” toward risk. An
important example of a spectral measure of risk is the k-expected shortfall.

Definition 2.3. Let the outcomes be equiprobable and let k ∈ {1, . . . , S}.
The k-expected shortfall of the realization vector X is defined by

ESk(X) = −δ
k∑

s=1

1

k
Xs:S. (2)

The k-expected shortfall is the discounted average of the worst k out-
comes. For a detailed discussion see Acerbi and Tasche (2002).

2.2 Transferable Utility Games

Let N = {1, . . . , n} denote a finite set of players. A value function v : 2N →
R with v({∅}) = 0 gives rise to a cooperative game with transferable utility
(game, for short) (N, v). Let Γ denote the set of games with n players.
An allocation is a vector x ∈ Rn, where xi is the payoff of player i ∈ N .
An allocation x yields payoff x(C) =

∑
i∈C xi to a coalition C ∈ 2N . An

allocation x ∈ Rn is called efficient, if x(N) = v(N); individually rational,
if xi ≥ v({i}) for all i ∈ N, and coalitionally rational if x(C) ≥ v(C) for all
C ∈ 2N . The core is the set of efficient and coalitionally rational allocations.

For each C ∈ 2N let a(C) ∈ Rn be the membership vector, ai(C) = 1 for
i ∈ C and ai(C) = 0 otherwise.

Definition 2.4. A balanced vector of weights is a vector (λC)C∈2N ∈ R2N

+ such
that

∑
C∈2N λCa(C) = a(N). A game (N, v) is balanced if

∑
C∈2N λCv(C) ≤

v(N) for all balanced vectors of weights.

A well-known interpretation of balancedness is that the players can dis-
tribute one unit of working time to any coalition and if each coalition is active
during a fraction λC of a unit of time then the players cannot generate more
value than v(N), the value of the grand coalition. Balancedness is a neces-
sary and sufficient condition for non-emptiness of the core in a transferable
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utility game (Bondareva, 1963; Shapley, 1967). See Predtetchinski and Her-
ings (2004) for an extension of the concept of balancedness to be necessary
and sufficient for non-emptiness of the core in non-transferable utility games.

For a game (N, v) and a coalition C ∈ 2N , a subgame (C, vC) is obtained
by restricting v to subsets of C.

Definition 2.5. A game (N, v) is totally balanced if for every D ∈ 2N its
subgame (D, vD) is balanced, that is, if for all D ∈ 2N and for all vectors
(λC)C∈2D ∈ R2D

+ satisfying
∑

C∈2D λCa(C) = a(D), we have
∑

C∈2D λCv(C) ≤
v(D).

In a totally balanced game every subgame has a non-empty core. Let Γtb

denote the family of totally balanced games with n players. An interesting
subclass of totally balanced games is the class of exact games (Schmeidler,
1972).

Definition 2.6. A game (N, v) is exact if for each C ∈ 2N there exists a
core allocation x such that x(C) = v(C).

Csóka, Herings, and Kóczy (2007a) introduce the concept of overbal-
ancedness.

Definition 2.7. An overbalanced vector of weights is a vector (λC)C∈2N ∈
R2N

+ such that
∑

C∈2N\{D,N} λCa(C) = a(N) + λDa(D) for some D ∈ 2N . A

game (N, v) is overbalanced if
∑

C∈2N\{D,N} λCv(C) ≤ v(N)+λDv(D) for all
overbalanced vectors of weights.

A natural interpretation of overbalancedness is that if one coalition is
forced to exist for a non-positive amount of time (−λD ≤ 0), which requires
its players to spend at least one unit of time in the other coalitions, the
players cannot generate more value than v(N).

Let Γe denote the family of exact games with n players. Csóka, Herings,
and Kóczy (2007a) give the following necessary and sufficient condition for
a game to be exact.

Theorem 2.8. The game (N, v) belongs to Γe if and only if it is totally
balanced and overbalanced.

Convex games are a subset of exact games (Schmeidler, 1972).

Definition 2.9. A game (N, v) is convex if for all C, D ∈ 2N we have that
v(C) + v(D) ≤ v(C ∪D) + v(C ∩D).

Let Γc denote the family of convex games with n players. We have that
Γ ⊇ Γtb ⊇ Γe ⊇ Γc.
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2.3 Risk Allocation Games

Denault (2001) introduces risk capital allocation problems : Suppose a firm
has n portfolios, the matrix of their realization vectors is given by X ∈ RS×n.1

The question is how the risk of the firm measured by a coherent measure of
risk has to be allocated to the portfolios.

Let X·i denote the i-th column of X, the realization vector of portfolio
i. Let Xs· denote the row of X corresponding to state of nature s, Xs,i its
element at row s and column i, and (Xs,i)i∈D the row vector corresponding to
state of nature s with elements i ∈ D. For a coalition of portfolios C ∈ 2N ,
let X(C) =

∑
i∈C X·i and Xs(C) =

∑
i∈C Xs,i.

Denault (2001) assumes that the n-th portfolio equals b ∈ R units of
reference instrument: X·n = b1S. We will consider the slightly more general
setting, where X·n can be any portfolio. Moreover, we make a distinction
between the risk environment and the induced game.

Definition 2.10. A risk environment is a tuple (N, S, p, X, ρ), where N is the
set of portfolios, S indicates the number of states of nature, p = (p1, . . . , pS)
is the vector of realization probabilities of the various states, X is the matrix
of realization vectors, and ρ is a coherent measure of risk.

Definition 2.11. Given a risk environment (N, S, p, X, ρ) a risk allocation
game is a game (N, v), where the value function v : 2N → R is defined by

v(C) = −ρ(X(C)) for all C ∈ 2N . (3)

A risk allocation game with n players is induced by the number of states
of nature, their probability of occurrence, n realization vectors and a coherent
measure of risk. Let Γr denote the family of risk allocation games with n
players. In such a game, according to Equation (3), the larger the risk of any
subset of portfolios, the lower its value.

If the rows of a matrix of realization vectors sum up to the same number,
then there is no aggregate uncertainty. Formally:

Definition 2.12. A matrix of realization vectors X ∈ RS×n has no aggregate
uncertainty if there exists a number α ∈ R such that X(N) = α1S.

Let Γrnau denote the family of risk allocation games with n players with no
aggregate uncertainty. Obviously, Γrnau ⊆ Γr. We first study risk allocation
games in general, then with no aggregate uncertainty.

1Denault (2001) uses continuously distributed random variables. We adjust his setting
to the more tractable setup with discrete random variables, resulting in realization vectors.
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3 Total Balancedness

3.1 Risk Allocation Games and Totally Balanced Games

Denault (2001, Theorem 4) shows that the family of risk capital allocation
problems is balanced. As a subgame of a risk allocation game is also a risk
allocation game, we can adjust his proof to show that risk allocation games
are totally balanced.

Proposition 3.1. All games (N, v) ∈ Γr are totally balanced, Γr ⊆ Γtb.

Proof. Consider a risk environment (N, S, p, X, ρ) inducing the game (N, v).
We show that for any D ∈ 2N , the subgame (D, vD) is balanced. Take any
(λC)C∈2D ∈ R2D

+ such that
∑

C∈2D λCa(C) = a(D). Then by Equation (3)
and the positive homogeneity and subadditivity of ρ we have that∑

C∈2D

λCvD(C) = −
∑

C∈2D

ρ(λCX(C)) ≤ −ρ(
∑

C∈2D

(
∑
i∈C

λCX·i))

= −ρ(
∑
i∈D

(
∑

C∈2D,C3i

λCX·i)) = −ρ(
∑
i∈D

X·i) = −ρ(X(D))

= vD(D),

where the last line follows from rearranging the summation and using the
fact that we have a balanced vector of weights. Thus (D, vD) is balanced. 2

Not only is it true that all risk allocation games are totally balanced, but
also any totally balanced game can be generated by a risk allocation game.
We illustrate Proposition 3.2 and its proof by Example 3.3.

Proposition 3.2. Each game (N, v) ∈ Γtb is induced by some risk environ-
ment (N, S, p, X, ρ), so Γtb ⊆ Γr.

Proof. Take any game (N, v) ∈ Γtb. The zero-normalized value function v0

corresponding to v is defined by

v0(C) = v(C)−
∑
i∈C

v({i}), C ∈ 2N . (4)

It is well-known that (N, v0) ∈ Γtb. Using the singletons with weights 1 it
follows from the total balancedness of v0 that for any C ∈ 2N

0 =
∑
i∈C

v0({i}) ≤ v0(C). (5)
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Moreover, any C ∈ 2N partitions N into C and N \ C, and using weights 1
on C and N \ C leads to

v0(C) + v0(N \ C) ≤ v0(N). (6)

Using Equations (5) and (6) we obtain that for any C ∈ 2N

0 ≤ v0(C) ≤ v0(N). (7)

The remainder of the proof is constructive. We specify the risk envi-
ronment (N, S, p, X0, ρ) as follows. We introduce a state of nature for all
non-empty coalitions of N , so S = 2n − 1. We label states of nature by
C, D ∈ 2N \ {∅}. We consider equiprobably outcomes, p1 = · · · = pS = 1/S,
and we let ρ be the risk measure equal to the 1-expected shortfall (Definition
2.3) with δ = 1. For each state of nature C ∈ 2N \ {∅}, let the row vector
X0

C· be such that

(X0
C,i)i∈C belongs to the core of (C, vC

0 ), (8)

X0
C,i = v0(N), i ∈ N \ C. (9)

The risk environment (N, S, p, X0, ρ) induces the game (N, v̄0). We will show
that v̄0 = v0.

By the definition of 1-expected shortfall, we have

v̄0(C) = −ρ(X0(C)) = min
D∈2N\{∅}

X0
D(C), C ∈ 2N . (10)

The definition of a subgame, Equation (8), and the efficiency of a core element
imply

vC
0 (C) = v0(C) = X0

C(C), C ∈ 2N \ {∅}. (11)

We show next that

X0
C(C) ≤ X0

D(C), C,D ∈ 2N \ {∅}. (12)

Indeed, if D ⊇ C then Inequality (12) follows from (8) as we have for a core
element (X0

D,i)i∈D in subgame (D, v0
D) that

X0
C(C) = v0(C) ≤ X0

D(C). (13)

If D 6⊇ C then one of the components of (X0
D,i)i∈C is v0(N), and using

Equation (7) Inequality (12) follows immediately. Combining Equations (11)
and (12) with Equation (10) we obtain that v̄0 = v0.

By using the matrix of realization vectors X defined by X·i = X0
·i +

v({i})1S, i ∈ N , we obtain a risk environment that induces the game (N, v).
2
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Example 3.3. We illustrate the construction used in the proof of Proposi-
tion 3.2 in an example with 3 players. Table 1 presents the value function v
of a totally balanced game, as well as the zero-normalized value function v0

corresponding to v. Note that Inequality (7) is satisfied by v0.

C v(C) v0(C)
{1} -10 0
{2} 3 0
{3} -2 0
{1, 2} -4 3
{1, 3} -6 6
{2, 3} 2 1
{1, 2, 3} -1 8

Table 1: A totally balanced game and its zero-normalized game.

In Table 2 we have specified the matrix of realization vectors X0 according
to requirements (8) and (9). For instance, for C = {1, 2} we have that
(X0

{1,2},1, X
0
{1,2},2) = (1, 2) is a point in the core of the subgame with players

1 and 2, and X0
{1,2},3 = 8 = v0(N).

It is easy to check that the risk environment specified by X0 and the risk
measure equal to the 1-expected shortfall with δ = 1 generate v0.

To generate the value function v, we transform X0 into X by specifying
X·i = X0

·i + v({i})1S for all i ∈ N . The risk environment corresponding to
X and the risk measure equal to the 1-expected shortfall with δ = 1 can be
verified to induce the game (N, v).

S X0
·1 X0

·2 X0
·3 X·1 X·2 X·3

{1} 0 8 8 -10 11 6
{2} 8 0 8 -2 3 6
{3} 8 8 0 -2 11 -2
{1, 2} 1 2 8 -9 5 6
{1, 3} 2 8 4 -8 11 2
{2, 3} 8 1 0 -2 4 -2
{1, 2, 3} 2 1 5 -8 4 3

Table 2: Payoff matrices for the zero normalized and the original games.

Note that in our constructive proof the statement of Proposition 3.2 is
strengthened in the sense that the family of games induced by risk environ-
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ments with S ≤ 2n−1 and the risk measure equal to the 1-expected shortfall
with δ = 1 coincides with the family of totally balanced games with n players,
that is any totally balanced game can be generated by a properly specified
risk environment with the 1-expected shortfall and 2n − 1 states of nature.
From Propositions 3.1 and 3.2 we derive the following theorem.

Theorem 3.4. The class of risk allocation games coincides with the class of
totally balanced games, Γr = Γtb.

Kalai and Zemel (1982b) use a similar construction to show that a game
is totally balanced if and only if it is the minimum game of a finite collection
of additive games. A game (N, v) is called additive if there exists a set
of real numbers b1, . . . , bn such that for every C ∈ 2N , v(C) =

∑
i∈C bi.

For a finite collection of games {vt}t∈T the minimum game is defined by
(min vt)(C) = mint∈T vt(C). It is easy to see that the totally balanced game
v in Table 1 is equal to the minimum game of the collection of additive games
generated by XC·, C ∈ 2N \ {∅}, in Table 2.

3.2 Linear Programming Results

Consider a totally balanced game (N, v) ∈ Γtb. Throughout the subsection,
we choose S = 2n − 1, p1 = · · · = pS = 1/S, and ρ the risk measure equal to
1-expected shortfall with δ = 1, just like in Proposition 3.2. Whenever we
write v is generated by a matrix of realization vectors X we mean that the
risk allocation game induced by the risk environment (N, S, p, X, ρ) equals
(N, v).

In the proof of Proposition 3.2 the matrix of realization vectors X generat-
ing v was constructed using the core requirement2 (8): for every C ∈ 2N \{∅}

(XC,i)i∈C belongs to the core of (C, vC). (14)

The other elements of X were chosen to be sufficiently large.
Let a game (N, v) ∈ Γ be given. We develop a linear programming

problem such that the optimal value of the objective function will exceed∑
C∈2N v(C) if (N, v) ∈ Γ \ Γtb and is equal to

∑
C∈2N whenever the game is

totally balanced. Moreover, in the latter case the matrices derived from the
linear program’s optimal solutions generate v.

To do so, given a matrix X we define the vector X̂ ∈ RSn by juxtaposing
the rows of X ∈ RS×n, that is X̂ = (X1·, X2·, . . . , XS·)

> ∈ RSn, and the

2There we had a zero normalized game, but it is easy to see that after renormalizing
the core requirement is still satisfied.
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reverse operation transforms a vector X̂ ∈ RSn into a matrix X ∈ RS×n. We
will use the notations X̂ and X interchangeably.

Let 0n = (0, 0, . . . , 0) ∈ R1×n be the n-dimensional row vector of zeros.
For every C ∈ 2N \ {∅}, we define the matrices

A(C) =


a(C)> 0n 0n

0n a(C)> 0n

. . .
...

0n 0n · · · a(C)>

 ∈ RS×Sn (15)

containing the membership vector a(C) transposed along the “diagonal” and
0n otherwise.

A matrix X ∈ RS×n generates v if and only if for every C ∈ 2N \ {∅}

v(C) = min
D∈2N\{∅}

XD(C). (16)

Equation (16) can be rewritten as

v(C) = min
D∈2N

AD·(C)X̂, (17)

where AD·(C) denotes the D-th row of A(C). It follows from Equation (17)
that X generates v if and only if for every C ∈ 2N \ {∅}

A(C)X̂ ≥ v(C)1S, (18)

where for each C at least one inequality holds with equality.
We introduce some additional notation. Let

E = (a({1})>, a({2})>, . . . , a(N)>) ∈ R1×Sn,

V =


v({1})1S

v({2})1S

...
v(N)1S

 ∈ RS2

, (19)

and

A =


A({1})
A({2})

...
A(N)

 ∈ RS2×Sn. (20)
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Consider the linear programming problem (Pv):

min EX̂

s. t. AX̂ ≥ V

X̂ ∈ RSn

(Pv).

The objective function of (Pv) captures the constructive proof of Proposi-
tion 3.2, as it is minimizing exactly the sum of those elements of X̂ which
are used in the core requirement (14). Using Equation (18) it can be seen
that the feasibility constraints in the linear program are the necessary re-
quirements for v to be generated by a feasible solution.

The set of optimal solutions of (Pv) is non-empty, since X̂ = (k, . . . , k) ∈
RSn is a feasible solution, where k = maxC∈2N v(C) and the set of feasible
solutions is bounded from below. We denote the set of optimal solutions of
(Pv) by X ∗

v and a particular optimal solution by X̂∗ ∈ RSn.

Proposition 3.5. Consider a game (N, v) ∈ Γ and an optimal solution
X̂∗ ∈ X ∗

v of (Pv). The optimal value of the objective function EX̂∗ equals∑
C∈2N v(C) if and only if v is generated by X∗.

Proof.
(⇒) By the feasibility constraints it holds that

AD·(C)X̂∗ ≥ v(C), C ∈ 2N \ {∅}, D ∈ 2N \ {∅}, (21)

Since by assumption EX̂∗ =
∑

C∈2N v(C), it follows that

AC·(C)X̂∗ = v(C), C ∈ 2N \ {∅}. (22)

It follows by Inequality (21) and Equation (22) that v is generated by X∗.
(⇐) We use a proof by contradiction. Suppose EX̂∗ 6=

∑
C∈2N v(C). By

the feasibility constraints it holds that

EX̂∗ >
∑

C∈2N

v(C). (23)

Note that minD∈2N\{∅} X∗
D(C) is attained in row C of X∗, since otherwise

we could decrease the objective function by substituting the row attaining
the minimum for row C. Combining this with Equation (23) we obtain that
there exists a coalition C ∈ 2N such that

min
D∈2N\{∅}

X∗
D(C) > v(C), (24)
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which implies that v is not generated by X∗, a contradiction. 2

Take any matrix of realization vectors X ∈ Rz×n, where z is a strictly
positive integer. Let Y (X) ∈ R(2n−1)×n denote a matrix in which for all
C ∈ 2N \{∅} we have that YC·(X) = XB·, where B ∈ arg minD∈2N\{∅} XD(C).
The following proposition claims that the realization matrix X generates v
if and only if Ŷ (X) is an optimal solution of (Pv).

Proposition 3.6. Consider a game (N, v) ∈ Γtb. The matrix of realization
vectors X ∈ Rz×n generates v if and only if Ŷ (X) ∈ X ∗

v .

Proof.
(⇒) Since X generates v, for all C ∈ 2N \ {∅} there exists a state of

nature s(C) such that

Xs(C)(C) = v(C),

Xs(C) ≥ v(C), s ∈ {1, . . . , S}.

It follows that Ŷ (X) is a feasible and optimal solution of (Pv).
(⇐) Since the game (N, v) is totally balanced, according to Theorem 3.4

v is generated by some matrix of realization vectors. By Proposition 3.5, it
follows that v is generated by all elements of X ∗

v , so Y (X) generates v, and
by construction X generates v. 2

The following result shows that any matrix of realization vectors X that
generates v satisfies (14).

Proposition 3.7. Consider a game (N, v) ∈ Γtb. Any optimal solution of
(Pv) X̂∗ ∈ X ∗

v satisfies the core requirement (14).

Proof. Take any X̂∗ ∈ X ∗
v . Since by Proposition 3.2 all totally bal-

anced games can be generated, we know by Proposition 3.5 that EX̂∗ =∑
C∈2N v(C). For every C ∈ 2N \ {∅}, feasibility requires that AC·(C)X̂∗ ≥

v(C), so
AC·(C)X̂∗ = v(C). (25)

The equalities in (25) together with the feasibility constraints imply that the
rows of X∗ contain core allocations of the respective subgames. 2

Propositions 3.6 and 3.7 imply that if a game is generated by X ∈ Rz×n,
then Y (X) satisfies the core requirement (14). Thus to generate a given
totally balanced game the rows of the matrix of realization vectors can be
permutated and some of them can be combined, but essentially the core
requirement (14) is satisfied in all of them.
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4 Exactness

In this section we show that if there is no aggregate uncertainty in a risk
environment, then the induced risk allocation game is an exact game, and
conversely all exact games can be generated by a properly specified risk
environment with no aggregate uncertainty. Proposition 4.1 claims that risk
allocation games with no aggregate uncertainty are exact.

Proposition 4.1. All games with (N, v) ∈ Γrnau are exact, Γrnau ⊆ Γe.

Proof. Consider the risk environment (N, S, p, X, ρ), where X has no aggre-
gate uncertainty. We show that the induced risk allocation game is totally
balanced and overbalanced (Definition 2.7), so exact by Theorem 2.8. Total
balancedness follows from Proposition 3.1. For overbalancedness take any
vector (λC)C∈2N ∈ R2N

+ such that
∑

C∈2N\{D,N} λCa(C) = a(N) + λDa(D).

Then by Equation (3), the positive homogeneity, and subadditivity of ρ we
have that ∑

C∈2N\{D,N}

λCv(C) = −
∑

C∈2N\{D,N}

ρ(
∑
i∈C

λCX·i)

≤ −ρ(
∑

C∈2N\{D,N}

(
∑
i∈C

λCX·i))

= −ρ(
∑
i∈N

(
∑

C3i,C∈2N\{D,N}

λCX·i))

= −ρ(
∑
i∈N

X·i + λD
∑
i∈D

X·i), (26)

where the last two lines follow from rearranging the summation and using
the fact that we have an overbalanced vector of weights, thus if i ∈ D then∑

C3i,C∈2N\{D,N} λC = 1 + λD, and if i /∈ D then
∑

C3i,C∈2N\{D,N} λC = 1.

Using translation invariance and positive homogeneity, Inequality (26) can
be rewritten as ∑

C∈2N\{D,N}

λCv(C) ≤ −ρ(
∑
i∈N

X·i + λD
∑
i∈D

X·i)

= −ρ(X(N))− ρ(λDX(D))

= −ρ(X(N))− λDρ(X(D))

= v(N) + λDv(D), (27)

thus we have an overbalanced game. 2
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Proposition 4.2 show that each exact game is generated by some risk
environment with no aggregate uncertainty.

Proposition 4.2. Each game (N, v) ∈ Γe is induced by some risk environ-
ment (N, S, p, X, ρ) such that X has no aggregate uncertainty, Γe ⊆ Γrnau.

Proof. Consider the exact game (N, v) ∈ Γe. We specify the risk environ-
ment (N, S, p, X, ρ) as follows. We introduce a state of nature for all proper
non-empty subcoalitions of N , thus S = 2n − 2. Let p1 = · · · = pS = 1/S,
and let ρ be the 1-expected shortfall with δ = 1. For all C ∈ 2N \ {∅} there
exist a core element xC such that xC(C) = v(C) since (N, v) is exact. Con-
struct X ∈ RS×n as follows. We define, for all C ∈ 2N \ {∅, N}, XC· = xC .
Since xC is a core element, it holds that XC·(N) = v(N), thus X has no
aggregate uncertainty. We denote the game induced by the risk environment
by v̄. Now we have for every C ∈ 2N \ {∅} that

v̄(C) = min
D∈2N\{∅,N}

XD(C) = v(C), (28)

thus v̄ = v. 2

Note that in the proof of Proposition 4.2 the sum of the entries in each
row of X is equal to v(N). That is why we need only 2n− 2 states of nature.

Combining Propositions 4.1 and 4.2 we have the following theorem.

Theorem 4.3. The class of risk allocation games with no aggregate uncer-
tainty coincides with the class of exact games, Γrnau = Γe.

Csóka, Herings, and Kóczy (2007a) show that if there are less than four
players then the class of exact games coincides with the class of convex games.
Using this result Theorem 4.3 can be reformulated as follows.

Theorem 4.4. Let n ∈ N be such that n < 4. Then the class of risk allocation
games with n portfolios and no aggregate uncertainty coincides with the class
of convex games with n players, Γrnau = Γc.

Theorem 4.4 is illustrated by the following example.

Example 4.5. In this example we show how a 3-player convex game is
generated by a risk allocation game with no aggregate uncertainty. Note that
the game in Table 1 of Example 3.3 is not convex since v({1, 2})+v({1, 3}) =
−4 − 6 = −10 > v({1}) + v({1, 2, 3}) = −10 − 1 = −11. However, by
changing v({1, 2}) to -5 we get the convex game displayed in Table 3. This
game is generated by the risk environment with matrix of realization vectors
X depicted in Table 4 and the risk measure of 1-expected shortfall with δ = 1.
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C v(C)
{1} -10
{2} 3
{3} -2
{1, 2} -5
{1, 3} -6
{2, 3} 2
{1, 2, 3} -1

Table 3: The value function of a convex game v.

S X·1 X·2 X·3
∑

i∈N Xs,i

1 -3 4 -2 -1
2 -7 3 3 -1
3 -10 5 4 -1

Table 4: A matrix of realization vectors generating v.

Notice that the rows of X correspond to appropriately chosen marginal
contribution vectors. For instance, in the first row of X we have the marginal
contribution vector corresponding to the permutation (3,2,1): v({3})−v({∅}) =
−2−0 = −2, v({2, 3})−v({2}) = 2−(−2) = 4, and v({1, 2, 3})−v({2, 3}) =
−1 − 2 = −3. At any marginal contribution vector, there are n coalitions
that exactly receive their value. Thus to generate a convex game fewer states
of nature are required than 2n − 1. In the example 3 states of nature suffice.
Also note that all rows of X sum up to -1, since the sum of the marginal con-
tributions is always the value of the grand coalition, and there is no aggregate
uncertainty.

Similarly to Proposition 3.6 we can characterize all the risk environments
that generate a given exact game.

Proposition 4.6. Consider a game (N, v) ∈ Γe. The matrix of realization
vectors X ∈ Rz×n without aggregate uncertainty generates v if and only if
Ŷ (X) ∈ X ∗

v .

Proof. Proposition 3.6 characterizes all the matrices that generate a given
totally balanced game. Since by Proposition 4.1 only exact games can be
generated with matrices satisfying no aggregate uncertainty, the proof is
straightforward. 2
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5 Conclusion

In this paper we have discussed transferable utility cooperative games derived
from a risk environment: risk allocation games. We have shown that the class
of risk allocation games coincides with the class of totally balanced games.
This result makes sure that a regulator or performance evaluator can always
allocate risk in a stable way: there will always be a core element, no matter
how the risk environment is changing.

We have also studied the case when the aggregate portfolio has the same
payoff in all states of nature. We proved that if there is no aggregate un-
certainty then the class of risk allocation games equals the class of exact
games, where for each coalition there is a core element such that the coali-
tion gets only its stand-alone value. This means that if there is no aggregate
uncertainty, then not necessarily everybody benefits from the diversification
effects in a stable allocation of risk. The regulator or performance evaluator
has much discretionary power in allocating risk, since for each coalition there
is always a stable allocation of risk such that the coalition gets its stand-alone
value.

We have characterized all the matrices of realization vectors that generate
a given totally balanced game or a given exact game. In both cases the
vectors derived from the matrices by juxtaposing their rows are related to
the optimal solutions of a linear programming problem.

Denault (2001) shows that if a risk allocation game for an arbitrary matrix
of realization vectors is convex then the risk measure by which it is induced is
necessarily additive, thus the generated risk allocation game is also additive.
However, by imposing some structure on the matrix of realization vectors we
have proven the following theorem: If there are less than four players and the
matrix of realization vectors has no aggregate uncertainty, then the generated
risk allocation game is convex, and any convex game can be generated by
such a risk environment.
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